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ABSTRACT

This paper presents Puara, a framework created to tackle
problems commonly associated with instrument design, im-
mersive environments, and prototyping. We discuss how
exploring Digital Musical Instruments (DMIs) in a collabora-
tive environment led to generalizing procedures that consti-
tute a starting point to solve technical challenges when build-
ing, maintaining, and performing with instruments. These
challenges guided the framework organization and focus on
maintainability, integrability, and modularity. Puara was em-
ployed in self-contained systems using 3 DMI building blocks
(network manager, gestural descriptors, Media Processing
Unit) and supporting 3 established DMIs (GuitarAMI, T-
Stick, Probatio) and one new instrument (AMIWrist). We
validated Puara with two use cases where parts of the frame-
work were used. Finally, we accessed the influence of frame-
works when exploring predefined NIMEs without concern
about the inner workings, or shifting composition paradigms
between event-based and gesture-based approaches.

Author Keywords

Music-related human-computer interaction; Reproducibility,
Hiding complexity; instrument design frameworks

CCS Concepts

•Applied computing→ Sound and music computing; Performing
arts; Media arts; •Computer systems organization→ Embedded
systems;

1. INTRODUCTION
Researchers and artists have increasingly explored gestu-
ral controllers for music applications since the 1980s. The
popularization of the MIDI protocol and the availability of
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low-cost computing devices are cited as reasons electronic
musical instruments became ubiquitous [17]. We can also
associate availability and low cost with the emergence of di-
verse tools for media arts, including Digital and Augmented
Musical Instruments (DMIs/AMIs), devices and systems for
art installations, and interactive environments.
The exploration of these new tools raised the technical

requirements and skills needed to design, build, reproduce,
compose with, and perform with New Interfaces for Musical
Expressions (NIMEs), or Internet of Musical Things [22].
Digital instrument designers and builders need extensive
knowledge of electronics and manufacturing. Sensors, signal
conditioning, filtering, soldering skills, and Computer-Aided
Design (CAD) are often used to create NIMEs. Performers
and composers are often required to have expertise in com-
munication protocols to transmit and receive data between
gestural controllers and sound synthesis units (and network-
ing protocols in some cases). Music programming languages
are also required tools for anyone willing to use digital in-
struments.
Although all the required knowledge is valuable, it is un-

fortunately not part of most music academic curricula. The
impact of these new expertise requirements can be seen when
artists try to meet the high level of demand in artistic activ-
ities [2], and the limitations of engineering solutions often
found in digital instrument design [13]. Moreover, there are
still several challenges when working with new media art
and instrument design from the music technology perspec-
tive. Some of the building challenges we tackled during this
research include: 1) building and design, 2) maintainability
and entry fee, and 3) managing complexity. We will discuss
the implications of each item in Section 3.
The exploration of these challenges was triggered by the

design and reproduction of three DMIs/AMIs developed at
Input Devices and Music Interaction Laboratory (IDMIL):
the T-Stick [18], the GuitarAMI [15], and Probatio [4].

2. EXPLORED DMIs

2.1 The T-Stick
The T-Stick is a gestural controller initially created at IDMIL
and the Centre for Interdisciplinary Research in Music Media
and Technology (CIRMMT) in 2006. The current version
of the T-Stick has capacitive sensors, an inertial measure-
ment unit (IMU), a piezoelectric transducer, a force-sensing
resistor (FSR), and, in some versions, infrared, air pressure,
and light sensors. The controller is usually built using a



cylindrical tube.
The work described by Nieva et. al. [18] paved the

ground for students to build T-Sticks in a discipline entitled
Gestural Control of Sound Synthesis1, taught at McGill
University in 2019. The discipline includes a practical
assignment where students build DMIs and gestural con-
trollers or perform experiments using these devices. The
building guide provided to the students (accessible at http:
//www.idmil.org/education/mumt620-t-stick/) by Nieva
presented step-by-step instructions on building the controller
and uploading the firmware, including images and com-
plete descriptions to guide the student through the process.
Graduate students from the music technology area solve de-
sign problems and update the building instruction manual to
allow the students enrolled in the discipline to fulfill the as-
signment. One example of this “on-demand”problem-solving
is a redesign to allow replicating the T-Stick without cutting
the pipe, as we can see in the updated building instructions
at the most recent building instructions2.

Figure 1: A sopranino T-Stick that was built using 3D-printed
supports (beds) under sensors (top image), and a soprano
T-Stick that was built using a modular 3D-printed frame (bot-
tom). It became unnecessary to cut the PVC tube lengthwise
for the latter building process (the cut tube was used in the
image for illustrative purposes) [14].

Along with hardware, strategies for maintaining soft-
ware and providing easy instructions to upload firmware
to the T-Stick were also essential parts of the design process.
Converting sensor fusion algorithms and data processing into
standalone libraries became crucial to maintaining the T-
Stick code and allowing students to work on specific aspects
of the instrument independently.

2.2 GuitarAMI
The GuitarAMI is an augmented instrument based on the
classical guitar. The device was first designed and built
in 2014 using an ultrasonic sensor, an IMU, and a laptop
responsible for audio manipulation and feature extraction.
The motivation for building the GuitarAMI was to overcome
some of the classical guitar’s intrinsic sonic limitations, such
as short sustain and the lack of sound intensity control after
the attack [14].
Different versions were built as the GuitarAMI was ac-

tively being developed between 2016 and 2018 at IDMIL.
Even though these versions share similar hardware, the
Sound Process Unit (SPU) uses different software and music
programming language depending on the version. Version 4

1https://www.mcgill.ca/study/2019-2020/courses/
mumt-620
2https://github.com/IDMIL/T-Stick/blob/master/
Docs/T-Stick_2GW_building_instructions(trill).md

is based on Prynth [6] and runs SuperCollider3 code, while
versions 5 and 5a use a modified Linux distribution capable
of running SuperCollider code, Pure Data patches, audio
plugins in LV2 format, and custom software installed by the
user.

Figure 2: GuitarAMI versions and their modules: version 4
(left), version 5 (center), and version 5a (right). Version 4 is
based on Prynth, while versions 5 and 5a use a custom Linux
distribution.

The development of GuitarAMI’s SPU provided tools to
establish methods for connecting data from gestural con-
trollers and synthesis processes. In addition, experiments
performed with different frameworks for DMIs and AMIs
during GuitarAMI-related projects [16] ensured flexibility
to use other controllers and synthesis units interchangeably.

2.3 Probatio
Probatio is a toolkit for prototyping DMIs [4]. It consists of
blocks, bases, hubs, and supports that can be easily combined
to create functional prototypes that can be played in different
positions and postures. The current prototype (version
1.0) was developed in an international partnership between
research laboratories in Brazil and Canada. Probatio has
been used in artistic performances (in Brazil) and research
in music technology, more specifically, instrument design.

Similar to the T-Stick and the GuitarAMI, Probatio’s mul-
tiple prototypes and different building processes add com-
plexity to hardware maintainability. In addition, Probatio
blocks can be rearranged, allowing users to prototype func-
tional digital instruments in real time. Such flexibility re-
quires complex map management between sensor data and
sound synthesis parameters. Using and embedding mapping
tools such as libmapper, or creating methods for the user to
set the destination of Open Sound Control (OSC) messages
in real time help fulfill these requirements.

3. BUILDING CHALLENGES

3.1 Designing and Building
For designing instruments and art installations, DMIs/AMIs
can employ different combinations of controllers and synthe-
sis units. Those parts can be built using different sensors,
microcontrollers, CPUs, etc. Those devices also vary sig-
nificantly according to the purpose, e.g., research, music
performance, or immersive spaces and art installations.
In addition, researching a particular aspect of art and

performance (including the effects of music/visuals on partic-
ipants) requires data to be retrieved/archived. The devices
also need to be consistent in their output if the research
question involves comparing interaction between gestural
controllers and different participants. Examples of this kind
of study include: how different artists perform similar ges-
tures [7], how researchers evaluate user experience for NIME

3https://supercollider.github.io/



Figure 3: Probatio assembled with color-coded blocks. Red
blocks output continuous sensor data, orange blocks output
discrete sensor data, and grey blocks don’t output data but
provide structural support.

[20], the biological response or impact of musical stimulus
[24], or DMI and mapping exploration [8].

Instrument designers creatively search for new interaction
models and paradigms, often requiring consistent sensor data
processing, robustness, and reliability [21].
Immersive spaces or art installations often require re-

liability and different levels of interaction between space,
audience/visitors, and the material artistically explored [25].
The series of immersive experiences4 and artistic residencies5

conducted at the Société des Arts Technologiques (SAT) dur-
ing 2022 highlight the level of reliability required for those
artistic events and explorations.

3.2 Maintainability and entry fee
For maintaining instruments, we have, in addition to hard-
ware replicability [3], a software layer, usually in the form of
firmware, to make the hardware work. Maintaining code in
a research-oriented environment where the creator is often a
student that will eventually move on to another project or
topic is difficult. The lack of team continuity is particularly
detrimental to instrument longevity.

As users, artists often lack the skills to troubleshoot techni-
cal problems as they were trained to make art, not computer
science or information technology. Wessel and Wright refer
to interactions between users and devices (and mappings)
when discussing low entry fee [23] for Musical Control of
Computers. We can also extrapolate this idea to setting
up and technically interacting with devices. Projects such
as the T-Stick Music Creation Project [10] and the already
mentioned artistic residencies at SAT/Metalab highlight
the difficulties artists encounter even before receiving any
gestural data or generating any sound/visuals.

In addition, artists and projects supporting Free and Open-
Source Software (FOSS) face another issue: FOSS usually
focuses on functionality but is not necessarily accessible to
non-tech-savvy users. I.e., high entry fee to use the tool,
hard to install/experiment, e.g., LivePose [9]; depends on ad-
ditional knowledge such as a text-based music programming
language, e.g., SATIE [1].

4https://sat.qc.ca/fr/programmation/?c=
experiences-immersives.
5https://sat.qc.ca/fr/nouvelles/
sortie-de-residences-metalab.

3.3 Managing complexity
Hiding complexity is a known principle for information tech-
nology and Operational Systems (OSs)6 . Even though
firmware for NIMEs are not as complex as OSs, some op-
erations and procedures may confuse users—in our case,
composers and performers. One example of a recurrent op-
eration that is opaque to the user is setting a T-Stick to
connect to a specific network. Performers often need to
change the network they are connected to according to the
venue, and the T-Stick sends OSC messages directly to an
IP address in the same network. Changing the connected
network can be achieved by reflashing the firmware (i.e.,
re-programming the device) to replace the network’s creden-
tials. This process is tedious, time-consuming, and requires
some familiarity with microcontrollers and programming
languages. One solution to facilitate these modifications
would be to program a web interface for the T-Stick. Users
could then connect with this interface using any web browser
and change parameters as needed. This implementation can
be seen in Figure 4.

Figure 4: The main screen of the current network manager
implemented on the T-Stick. Users can change configuration
parameters in real time.

Another interesting example still regarding the T-Stick
is how the high-level gestural descriptors used by several
performers are now embedded into the instrument and can
be accessed directly as OSC messages [10]. The complexity
of having multiple Max patches or abstractions generating
those descriptors is now hidden from the user. As a side
effect, this procedure also makes the descriptor promptly
available for users who couldn’t run Max patches, e.g., Linux
users.

4. SHARING MODULAR COMPONENTS
Not all research topics allow students to work together and
increase the reach of each individual’s research by doing so.
As an inherently interdisciplinary field, music technology

6https://computersciencewiki.org/index.php/Hiding_
complexity.



provides advantages in such interactions. Advancements
in instrument design can impact other studies conducted
with these devices. Starting in 2016, several researchers
from the IDMIL started sharing their instrument design
solutions, such as sensor algorithms, user interfaces to con-
figure DMIs/AMIs, or functions to clean and convert data.
These solutions were used primarily to accelerate instrument
design and enable studies using these instruments.

As part of an investigation on the replicability and repro-
ducibility of DMIs [3], organizing libraries and documen-
tation further advance the process of creating a common
set of tools to maintain gestural controllers and creating a
plug-and-play method for deploying DMIs/AMIs on stage
and research. As of 2021, the T-Stick, GuitarAMI, and
Probatio [4] shared embedded sensor fusion algorithms and
a large portion of their firmware.

The development of these projects constituted the starting
point for creating a library of components, or building blocks,
to reproduce devices or share improvements between the
DMIs.

5. THE PUARA FRAMEWORK
The Puara framework is derived from modules developed
for the three DMIs described in Section 2. The name Puara
means “to tie” in Old Tupi7.
The Puara framework was created as a set of tools for

building and deploying new media installations and NIMEs.
The first additions included libraries to control network con-
figuration, OSC addresses for the mentioned DMIs/AMIs,
and C++ classes to retrieve sensor data in ESP32-based con-
trollers. Using this Wi-Fi manager, entitled Puara Manager,
instrument designers could ensure the data would be easily
acquired through the network.
Recipes and scripts to quickly configure Raspberry PIs8

allowed artists and researchers to use gestural controllers as
self-contained instruments.

It is interesting to note that even though the authors use
the term framework to describe Puara, all libraries, firmware,
hardware specifications, and documentation are programmed
or created independently and can be used separately. This
characteristic allows instrument designers, artists, and re-
searchers to use only the needed elements, connecting with
their existing tools and workflows, such as Bela, Satellite
CCRMA, or off-the-shelf controllers. In addition, instrument
designers can use firmware modules to create their gestural
controllers.
The Puara Manager also facilitates instrument usability.

Performers can change the controller network and OSC con-
figuration without flashing new firmware into the controller.
In addition, high-level gestural descriptors used to interact
with the gestural controllers [14] could also be generalized
and transferred between DMIs/AMIs. E.g., the jab algo-
rithm from the T-Stick could be transferred to the AMIWrist,
and performers could use the same gesture for other instru-
ments, such as augmented drums, as will be described in
Section 6.1.

The Media Process Unit (MPU) aims to enable an easier
and more reliable performance setup, especially in scenarios
where the sound synthesis algorithms and data mapping
are configured to run automatically upon initialization, or
researchers need software and code ready to deploy or a
predefined setup that can be modified or hacked in real-time.

7Old Tupi is an extinct language which was spoken by
Brazil’s first nations who inhabited coastal regions Southeast
of the country. Puara has a more literal meaning of tying
(with a rope).
8https://github.com/Puara/MPU.

A similar scenario is discussed in Secion 6.2. The MPU is
generated by a script, compatible with most OSs. The script
creates a complete and hackable Raspberry Pi or NVIDIA
Jetson OS image that can be deployed for DMI/AMI design
by creating self-contained sound synthesis devices, video
mapping and immersive environments, or sound installations.
The Puara Framework modules (libraries and tools) are

available at https://github.com/Puara/, and the first ver-
sion of Puara’s documentation can be found at https://

sat-mtl.gitlab.io/documentation/puara/en/. Figure 5
shows a short description of the available modules and how
they relate to device design (e.g., gestural controller, haptic
device) or the MPU.

Figure 5: Puara’s modules for controller design and facili-
tate creating self-contained Media Processing Units (MPUs).
Modules can be used independently, integrating Puara tools
with their existing tools and workflows. A description of the
Puara framework can be found in Section 5.

6. USE CASES
Current research and artistic projects using Puara framework
components include the already mentioned T-Stick, the
GuitarAMI, and Probatio. The list also includes projects
such as the t-Tree and the Torquetuner. The t-Tree is a tree-
inspired“docking station” for T-Sticks that allows performers
to interact with each other in collaborative performances
[11]. TorqueTuner is a hardware and software module that
allows instrument designers to “map sensors to parameters of
haptic effects and dynamically modify rotary force feedback
in real time” [12, 19].

The Puara framework was also extensively used in research-
creation projects and events involving immersive spaces such
as Freeze! and the Kikk festival 2022 workshop as use cases
exploring possibilities when using modular frameworks with
specific—and diverse—goals.

6.1 Freeze!
The Puara framework was applied artistically in Freeze!
(2022), a piece for augmented drum kit—drum kit with added
sensors to capture specific performer’s gestures—composed
by Jason Noble with technical assistance by Edu Meneses
and premiered by Martin Daigle at a live@CIRMMT event
at McGill University in May 2022, as can be seen in Figure 6.
The composer sought to derive all of the sonic material in the
piece from live-captured sounds of the kit (snare, toms, kick,
cymbals) without external synthesizers or samples. All of the
Digital Signal Processing (DSP) began with a spectral freeze,
in which a short spectral window is prolonged indefinitely
through an interpolated loop. The point in the evolution
of the sound’s envelope at which the freeze is activated



Figure 6: Freeze! premiere, May 26th, 2022, at the
Multimedia Room (MMR), Montreal, Canada.

dramatically affects the resulting sound quality: as such,
the performer needs to be able to accurately control the
timing of the freeze. We achieved this control by mapping
the gestural data produced by wearable sensors in the shape
of wristbands to the freeze trigger.
One goal of this piece was to give the drummer control

of parameters not usually associated with the kit, such as
melody and harmony. Another goal was to allow the super-
position of textures, some electronically sustained and others
produced acoustically in real time, so that the performer
could manipulate stratified layers (e.g., background, middle-
ground, and foreground) beyond what is normally available
from the acoustic drum kit. Finally, the piece aimed to
harness the performer’s gestures in controlling the signal
processing parameters, allowing Daigle to sculpt the sound
in real time by moving his hands through the air. These
three goals combined effectively made the performer the
soloist, ensemble, and conductor of his own mini-concerto.
The AMIWrist was explicitly developed for Freeze! and

uses an off-the-shelf open-source IoT development board, the
M5StickC. We developed custom firmware for the M5StickC,
allowing us to use the Puara library responsible for gener-
ating high-level gestural descriptors from raw sensor data.
In this particular case, we acquired accelerometer and gyro-
scope data to generate partial orientation information and
instrumental gestures already generalized from the T-Stick,
such as jab and shake.
Upon experimentation with Puara’s gestural descriptors,

we decided to use the jab gesture, created initially for the
T-Stick as discussed in Section 5. Other processes such as
pitch shift, harmonization, granulation, and bandpass filter
manipulation were applied to the frozen spectrum using
orientation gestures extracted from the IMU, and discrete
gestures using buttons and footswitches. Figure 7 demon-
strates how these aspects of the composition were notated in
the score. The top “staff” graphically depicts gestures, the
middle staff uses normal notation for drum kit playing, and
the bottom staff graphically depicts electronic sounds. In
this case, the performer jabs horizontally using the right arm
to freeze the kick drum, then oscillates that hand to pitch
shift the frozen spectrum (counterpointed against a non-
shifting spectrum), and finally stops the sound and clears
the buffer with a vertical jab (corresponding with another
hit on the kick drum). The execution (performance) of is
excerpt can be seen at https://youtu.be/Ib16r6o3uHE?

t=35, while the full dress rehearsal can be accessed at
https://www.youtube.com/watch?v=Ib16r6o3uHE.

The AMIWrist sends many streams of data corresponding
to axes (x, y, and z for raw accelerometer and gyroscope data)

Figure 7: Score excerpt from Freeze! (Noble, 2022) for
augmented drum kit using the AMIwrist (Puara wristband).

and other high-level gestural descriptors available through
specific Puara framework libraries, e.g., orientation (yaw,
pitch, roll), shake, and jab. For Freeze!, the gestural data
is sent to a Max patch created by the composer using OSC.
The patch also receives audio inputs from microphones cap-
turing various sounds from the kit, so that the wristband
data can activate processing in the patch that manipulates
the audio before sending it to loudspeakers in real time.
The multiplicity of data streams gave the composer a rich
palette of gestural information to map onto sound processes,
allowing the gestures themselves—including their visual,
kinesthetic, and semantic aspects—to become primary com-
positional elements. For example, the assertiveness or even
aggressiveness of a jab gesture stands in stark contrast to
the gentle, fluid quality of a slow, free oscillation of the
hand. Accordingly, these gestures were used to communi-
cate different affects with plausible cross-modal mappings
between gestures, soundworlds, and extramusical domains
(e.g., emotions or psychological states).

Freeze! allowed us to experiment with different compo-
nents of the Puara framework and test the interoperability of
each module with tools commonly used by artists. Notably,
the OSC protocol allowed the easy connection between the
Max patch programmed by the composer and the gestures
generated by the AMIWrist. It was also possible to re-
duce the composer’s workload of cooking and extracting
meaningful information from raw sensor data. Moreover,
the composer could focus on a higher-level description of
gestures, allowing easier communication between composer,
performer, and music technologist [14].
Another major advantage of conceiving of working with

Puara framework components, from the composer’s point
of view, is that it encouraged a shift from event-based to
gesture-based composition. Event-based electroacoustic com-
position, in which DSP is organized into events that are acti-
vated and deactivated throughout the piece, treats the patch
more like a musical score, whereas gesture-based composi-
tion, in which gestures control DSP without pre-programmed
event organization, treats the patch more like a musical in-
strument.

6.2 Kikk festival 2022 workshop
The workshop presented at the Kikk Festival allowed the
participants to explore techniques to create spontaneous
immersive spaces, including projection mapping and sound
spatialization with a quadraphonic speaker system, using
a relatively minimal setup based on embedded computers,
as shown in Figure 8. The tools commonly required to
create such immersive experiences include software for video
mapping, sound spatialization hardware and software, and
gestural controls that are either aimed to be controlled by
an individual or experienced as a group. During the Kikk
festival workshop, we mainly explored two software from
SAT/Metalab: Splash for projection mapping running on the



Figure 8: A view of the KIKK festival workshop in Namur,
Belgium, in September 2022.

Nvidia Jetson, and SATIE for sound spatialization running
on the MPU.
SATIE is an audio spatialization engine programmed in

Supercollider. SATIE is designed to hide some complexity
involving the creation and manipulation of audio scenes and
sound objects. Splash is a FOSS video mapping software
designed to automatically calibrate multiple video projectors
and feed them with the input video sources [5].

Developing an immersive space requires substantial techni-
cal knowledge and awareness of the environment, as well as
creative skills to generate the content to be displayed. Using
the MPU in this context helped reduce the technical knowl-
edge required, as it can be seen as a black box that relies
on standard communication protocols to be operated. As
OSC is now common practice for most creation software, be
it proprietary software or FOSS, connecting different tools
using this protocol reduced the workload for the workshop
participants and organizers alike.
The workshop is part of a series of events organized by

SAT/MEtalab aiming at an in situ creation experience of
(deployable) immersive spaces. Combining artcraft and tools
from multiple practitioners, these workshops invite the par-
ticipants to actively contribute to the final artistic result, in
the form of a small audio-visual or interactive experience.
In this particular event, participants were mostly begin-

ners, with very little technical knowledge of the tools to
create immersive spaces. Nevertheless, the organizers relied
on already known and mastered software for each participant
to minimize hurdles due to the learning curve. Prioritizing
the communication between tools also allows for combining
all software/expertise capabilities.
Most of the premises presented by the organizers aimed

towards using the MPU as a bridge to aid communication
between software via the OSC protocol.
Four active speakers were connected to a USB sound

card (Focusrite Scarlett 4i4), itself connected to the MPU.
The MPU received external sound sources and control data
through the network. Sound source transmission was done
using JackTrip,9 while OSC messages carried commands to
spatialize different sound sources. The MPU was connected
to a router using ethernet cables. Sound sources and OSC
commands were coming from a laptop connected with Wi-Fi
to the router (called source laptop in the remainder of this
section). A JackTrip server instance was running on the
MPU, and a mono wave file was played on the source laptop
and sent to the MPU with a client instance. The setup is
shown in Figure 9.

The MPU was also running an instance of SATIE that was
set up to playback a monophonic stream of sound from the
Jacktrip server to the quadraphonic speaker setup, allowing

9https://www.jacktrip.org/.

Figure 9: Setup for the workshop.

this sound to be positioned in space. With this setup, the
most obvious parameter to control was the azimuth position
of the monophonic sound source.

During the workshop, we presented two examples of con-
trolling a sound object’s spatial position using OSC. In each
example, OSC messages were sent to SATIE to change the
azimuth position of the sound source streaming from the
laptop.

• MIDI controller (Korg NanoKontrol): The controller
was plugged into the source laptop. We used one fader
from the controller to set the azimuth parameter. The
NanoKontrol sent values between 0 and 127, while
the azimuth parameter from SATIE requires values
between -180 and 180. To do this value conversion and
protocol conversion (from MIDI to OSC), we created a
simple script with Chataigne10. Running on the source
laptop.

• Cellphone gyroscope using MultiSense OSC11: This
free Android application can use the data from multi-
ple sensors of a cellphone and send them as an OSC
message over the network. The OSC implementation
is incomplete and it requires reformatting to be inter-
preted by SATIE. This reformatting was done with
Chataigne on the source laptop and then forwarded to
the MPU.

For the Kikk workshop, the organizers could previously
prepare the MPU and all entry points for data and audio.
The setup process would then be simplified as, once the
MPU was set, the ideal behavior is to run all processes
automatically upon initialization. At the same time the
Puara framework brings hackable tools, the inner workings
might be opaque to end users, especially in cases where the
devices are prepared beforehand.

7. DISCUSSION
The mentioned use cases provided useful feedback and in-
formation regarding the use of Puara, interesting shifts in
paradigm suggested by the framework organization, and a
list of drawbacks to be addressed in future work. We briefly
discuss some key points in the following sections.

7.1 Tools imply paradigms
Regarding the Freeze! project, the composer made insightful
observations on how Puara’s instrumental gesture library

10http://benjamin.kuperberg.fr/chataigne/en
11https://play.google.com/store/apps/details?id=edu.
polytechnique.multisense.release&gl=US&pli=1



influenced the composition. The composer’s previous edu-
cation and experiences fostered an event-based approach to
electroacoustic composition. He had found this laborious, as
a composition may involve dozens of events which can each
require a great amount of time and work to produce, and
also anxiety-inducing, as event-based pieces often involve
linear sequencing of events in an order that cannot be easily
reversed in live performance, potentially making it difficult
or impossible to recover if something goes wrong. On both of
these fronts, he found the gesture-based approach implicit in
the Puara system to be liberating: if the patch is conceived
as an instrument, then the musical structure can flow from
exploring different things the instrument can do—as it does
in acoustical instrumental composition—without the need
to constantly reconfigure the instrument itself.
Additionally, as we can observe in Section 6.1, jab, an

instrumental gesture created for the T-Stick, could be re-
purposed to the AMIWrist. Generalizing instrumental ges-
tures has the potential to not only facilitate instrument
design but also assist performers in learning how to play
with DMIs/AMIs. The gestures behave consistently across
different instruments: The GuitarAMI, the T-Stick, and
the AMIWrist have the jab gesture implemented in their
firmware. The composer could focus on the performative
aspects without creating specific gestural descriptors. The
composer was able to choose to focus on adding and modify-
ing the acoustic instrument’s behavior rather than creating
a static sequence of predefined events.

7.2 The black box effect
A black box is a system that can be viewed in terms of
its inputs and outputs, without any knowledge of its inner
workings. DMIs/AMIs usually carry some opacity as it is
often hard for the audience to infer exactly which sensors
are employed for each gesture and if (or how) the sensor
data is mapped to generate the perceived output. The MPU
potentially brings this opacity to artists and even instrument
designers. During the Kikk workshop, participants were
unaware of the inner workings of the MPU other than that
it contains the software presented during the event.
This black box perception overshadows the function of

each tool, to the point that during the Kikk workshop,
participants asked about the MPU availability rather than
asking for the software they were effectively using to fulfill
each task.
The black box effect on the MPU further reinforces the

modularity of the Puara framework and the possibility of
creating several layers of hidden complexity. One example of
this phenomenon can be seen in the several hidden complex
layers of Freeze! : The Puara library hid the complexity
of creating the jab gesture from the instrument designer,
while the designer hid the firmware and gestural mapping
complexity from the composer, which hid the complexity of
the DSP within the patch. Finally, the performer perceives
the augmented drum kit as a single instrument with their
instrumental technique and expected sound outcome.

7.3 Feedback and areas for improvement
Compositionally, the dichotomy between event-based and
gesture-based thinking and, more specifically, the use of both
paradigms in Freeze!, led to some issues. The remnants of
event-based organization caused technical problems in the
performance that could have been avoided by more fully
embracing a gesture-based approach.
Technically, the project team felt the need to explore

other hardware options for the gestural controller and pro-

cessing unit (laptop). It is believed that the MPU could
alleviate the need for a computer and reduce setup com-
plexity. However, using the MPU limits access to music
programming languages that are not Linux-compatible, such
as Max. Additionally, different wristband controllers may
have superior functionality, especially concerning battery
capacity and sensors to improve orientation estimation.

The high-level gestural descriptors available in the Puara
library may be an area for future improvement. In principle,
the multiplicity of instrumental gestures from the AMIWrist
provides many possible mappings for many different signal
processing parameters, which can be very exciting for the
composer’s imagination. In practice, some of these data are
too unreliable or too closely correlated with raw sensor data
to be reliably distinguished. For example, the composer
found elevation and rotation of the hands to be clearly
different gestural concepts and sought to use them to control
different parameters of the sound (e.g., elevation mapping
onto pitch height, rotation mapping onto harmonicity). In
practice, though, the data streams for these two gesture
types were not reliably distinguishable, and as a result, a
gated footswitch was required to separate them. The input
of the instrument designer was necessary to ensure reliable
mappings in this instance; ideally, composers would be able
to implement their own mappings independently.
At the time of the Kikk workshop, the MPU was in an

early prototype stage. Some software was not installed in the
created OS image and required some additional work to set,
especially without more comprehensive user documentation.
For the workshop, JackTrip required manual installation
and to be launched using the command line interface. The
process of enabling JackTrip allowed the workshop organizers
to remove some of the opacity regarding the MPU, showing
part of the complexity previously hidden by the device.

8. CONCLUSION AND FUTURE WORK
The Puara framework represents a direct contribution to
DMI and AMI design reproducibility research. The libraries
and scripts constitute building blocks that can facilitate
building new instruments using already implemented code
and gestural descriptors.
The framework also allowed enough flexibility for the

composer to use the controller and gestural descriptors in
the chosen music programming language. This flexibility,
however, came at the expense of not being able to use an
embedded system for DSP, as stated in Section 7.3. The
live performance setup time was also improved compared
with a regular performance using electronics.

Future work includes tightening SATIE’s integration with
the MPU, proving more possibilities for interacting and set-
ting up Puara devices. For instance, Poire12 could be added
as a web interface for SATIE to facilitate the spatializer
speakers setup and sound source instantiation. Also, map-
ping tools, along with session managers for mapping data
signals, are a recurring need. Libmapper would be a good
candidate for the task, with an interface such as webmap-
per13. Such mapping tools may add more flexibility and
avoid the need to install mapping software on each device
that requires sending and receiving data.
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