
Addressing Barriers for Entry and Operation of a
Distributed Signal Mapping Framework

Brady Boettcher
IDMIL, CIRMMT
McGill University
Montreal, Canada

brady.boettcher@mail.mcgill.ca

Eduardo A. L. Meneses
SAT/Metalab, CIRMMT

Montreal, Canada
eduardo@edumeneses.com

emeneses@sat.qc.ca

Christian Frisson
SAT/Metalab

Montreal, Canada
christian.frisson@gmail.com

cfrisson@sat.qc.ca

Marcelo M. Wanderley
IDMIL, CIRMMT
McGill University
Montreal, Canada

marcelo.wanderley@mcgill.ca

Joseph Malloch
GEM Lab

Dalhousie University
Halifax, Canada

joseph.malloch@dal.ca

ABSTRACT

The novelty and usefulness of the distributed signal map-
ping framework libmapper has been demonstrated in many
projects and publications, yet its technical entry and opera-
tion requirements are often too high to be feasible as a map-
ping option for less-technical users. This paper focuses on
completing key development tasks to overcome these bar-
riers including improvements to software distribution and
mapping session management. The impact of these changes
was evaluated by asking several artists to design an interac-
tive audiovisual installation using libmapper. Observations
and feedback from the artists throughout their projects let
us assess the impact of the developments on the usability
of the framework, suggesting key development principles for
related tools created in research contexts.

Author Keywords

libmapper, signals, mapping, installation, feasibility

CCS Concepts

•Software and its engineering → Software creation and man-
agement; •Human-centered computing → Interaction de-
sign; •Applied computing → Sound and music computing;

1. INTRODUCTION
The continual creation of new interfaces for musical expres-
sion (NIMEs) has resulted in the availability of a large de-
sign space of control signals that enable real-time control
of audio and visual systems. Each system has its own im-
plementations of protocols and representations for creat-
ing mappings to other systems and NIMEs, and often uses
common standards such as MIDI and Open Sound Control
(OSC) to support compatibility. The limitations of these

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

standards regarding data types, ranges and static signal
mappings have led to the creation of mapping support tools,
including MetaMallette [6, 9], TapeMovie [16], junXion [17],
and O2 [5].

The open-source middleware libmapper takes a distributed
approach to mapping support, enabling devices to declare
their signals independently of one another and without ad-
herence to a representation standard or schema. Discovery,
data translation (of e.g., name, type, vector length), arbi-
trary map processing, and peer-to-peer transport are han-
dled in a distributed fashion over a local network [13]. Users
are able to create complex mappings with any of libmap-
per’s user interface tools—such as webmapper (graphical
user interface) [19] and umapper (command-line interface)1—
or by interacting with the libmapperGraph API, or by send-
ing session management messages over OSC. While libmap-
per is written in C, language bindings and environment
bridges exist for C++, C#, Java, Python, Max and Pure
Data2, SuperCollider3, and Ableton Live4; with the aim of
enabling members of artistic/technological collaborations to
continue using tools they are already familiar with rather
than asking them to use a common platform.

Over the years, libmapper has been used for both signal
mapping research and artistic projects. Research projects
include the study of the mapping design process [20], vi-
sual representations of mapping networks [19], the exten-
sion of map memory to support live looping and sequenc-
ing [8], and generalized support for mapping systems and
phenomena with multiple instances [14]. Artistic projects
using libmapper include the McGill Digital Orchestra [7],
Les Gestes [12], and numerous pieces for the T-Stick digital
musical instrument (DMI) (e.g., [18]).

Despite this relatively widespread use, most use has been
supported directly by the research labs and developers re-
sponsible for the libmapper project. Use of the mapping
tools “in the wild” is much rarer, partly due to technical
obstacles that prevent or slow uptake by composers, instru-
ment designers and media artists who are not supported by
a research lab.

This paper attempts to remove the primary barriers for
artists and evaluates the changes made by guiding artists in
using the framework to design a meaningful artistic project.
Recommendations for software developers of related tools

1https://github.com/libmapper/umapper
2https://github.com/libmapper/mapper-max-pd
3https://github.com/libmapper/MapperUGen
4https://github.com/libmapper/Mapper4Live



are then presented based on the development principles in-
troduced in the paper.

2. ADDRESSING BARRIERS
The libmapper project has shown a clear potential for uses
in mapping research in recent years, motivating many re-
searchers to make contributions to the library5, its mapping
interfaces6,7, language bindings and application bridges8.
The libmapper library has been embedded into a number
of gestural devices as well including TorqueTuner [11], the
T-Stick [11] and Probatio [4]. While these contributions
bring valuable new features and research attention to the
framework, its user base is largely confined to developers
with highly technical experience.
We speculate that this characteristic does not stem only

from a lack of awareness, but from the technical require-
ments to install and operate the tools themselves. The
fact that the libmapper project aims at supporting users
of many languages, programming environments, applica-
tions and hardware platforms creates challenges for software
distribution, especially since many are “moving targets”—
language bindings for Max that were stable and performant
in 2012 will not run under newer versions of Max, and web
applications (such as the webmapper session manager) are
sometimes broken by new web browser releases. The prior-
itization of new features over stability may also be partly
responsible for these consequences, alas, it can prove dif-
ficult to justify important engineering work in a research
context.
While the framework boasts many benefits when com-

pared to competing mapping approaches, this barrier pre-
vents the user feedback needed to fully determine its feasi-
bility amongst its peers. To open the doors for artistic uses
of the framework and to answer research questions regard-
ing mapping design, we shift the focus of development to
overcoming obstacles that prevent its common use among
artists.
We have chosen to address three main issues that plague

the usability of libmapper for the end user. The first con-
cerns improving the ease of installation and setup for libmap-
per and its bridges across all platforms. Next, we present a
mapping session management Python module that handles
many of the challenges associated with designing a portable
and stable distributed mapping session. Finally, several im-
provements are introduced to webmapper with the intent of
increasing the readability of signals and their metadata for
the user. These three developments, detailed in the coming
sections, aim to improve the accessibility and usability of
libmapper, removing technical barriers to support the pur-
suit of artistic endeavors.

2.1 Distribution of the mapping framework
The many tools that make up the libmapper framework
make its distribution an especially difficult task. We have
chosen to focus on supporting continuous integration (CI)
of the libmapper library and webmapper, as well as im-
proving the documentation and organization of libmapper’s
application bridges.

2.1.1 CI and package managers
5https://github.com/libmapper/libmapper
6https://github.com/libmapper/webmapper
7https://github.com/bboettcher3/MapperVST
8http://libmapper.org/ecosystem/protocol_

bridges

CI is an important engineering principle that encourages au-
tomated building and releasing of software. Often left out
of research projects, CI principles reduce debugging time
using automated tests and support stability by encouraging
frequent releases [10]. Using CI for libmapper and webmap-
per, we can present users with a precompiled package that
can be installed through their chosen package manager and
platform. We have utilized Github Actions for these pur-
poses, allowing us to automate the building and testing of
libmapper and its language bindings for all platforms when
updates are pushed.

Libmapper itself functions as a dynamically-linked (or
shared) library, its functions accessed by other programs
at runtime. While Linux and MacOS contain dedicated
directories in which these types of libraries are installed,
Windows leaves it up to the user. For this reason, we did
not prioritize the distribution of the libmapper binaries as
developers will often want to build shared libraries directly
from source. However, we decided to align with Ubuntu’s
library system and created a personal package archive for
libmapper9 that allows installation using Ubuntu’s package
manager apt.

Now that libmapper’s Python bindings are built with CI,
we are able to distribute them using pip, Python’s pack-
age manager. By simply running pip install libmap-

per10, the bindings for their platform are installed for their
Python environment and can be easily updated at any time
by downloading the files from Github Actions. As webmap-
per is built using the Python bindings, users no longer need
to build anything from source to operate the application.
The creation of standalone webmapper executables for all
platforms has been enabled using PyInstaller11, providing a
method of using the application without entering the termi-
nal. A Windows installer has also been created for the stan-
dalone version of webmapper, integrating it directly along-
side the user’s other applications.

Continuing with our design philosophy, we have imple-
mented cross-platform compilation for several of libmap-
per’s application bridges including Ableton Live12, Max13

and SuperCollider14. For the Max bridge, we have pack-
aged the plugins and submitted them to the Max package
manager15. If the package is accepted it will become avail-
able for one-click installation for all platforms within Max,
avoiding all manual compilation or installation. The pack-
ages are created automatically with Github Actions, making
releases easier for developers as well.

These improvements to libmapper’s distribution enable
artists to grab the most recent release easily without having
to manually build the tools from source in order to use them.
Additionally, our release process is much easier and quicker
using the virtual build environments provided by Github
Actions.

2.1.2 Application bridges
We have implemented a secondary signal creation option
for the SuperCollider bridge to provide more flexibility for
users. In addition to using signal UGens provided by the

9https://launchpad.net/~libmapper/+archive/
ubuntu/libmapper/

10https://pypi.org/project/libmapper/
11https://pyinstaller.org/en/stable/
12https://github.com/libmapper/Mapper4Live
13https://cycling74.com/products/max
14https://github.com/libmapper/MapperUGen
15https://docs.cycling74.com/max8/vignettes/

package_manager



Figure 1: Internals of the Mapper4TD container, showing its inline setup and usage instructions.

plugin, users are now able to route signals using Busses16,
offering the possibility to create signals outside of user-
defined synthesizers.
A new libmapper bridge, Mapper4TD17, has also been re-

cently created for TouchDesigner18, opening up new oppor-
tunities for realtime audiovisual mapping. As seen in Figure
1, Mapper4TD supports both source and destination signal
types, letting users send TouchDesigner’s many source sig-
nals out to other devices as well as modulate TouchDesigner
parameters with external devices.
Plugins in TouchDesigner are called operators, and are

able to connect signals to each other with drag-and-drop
wires. TouchDesigner is bundled with its own Python envi-
ronment, providing abstract structures for developers to use
when creating a plugin. Using this environment along with
libmapper’s Python bindings, we can create a libmapper
device and control its signals from within a TouchDesigner
operator. One of TouchDesigner’s LFO operators was then
connected to trigger signal updates at a fixed rate and push
them to the network. Finally, Mapper4TD was packaged
into a portable container along with detailed setup and us-
age instructions. As the plugin was designed entirely with
Python and TouchDesigner’s internal operators, it is cross-
platform compatible and requires no compilation.

2.1.3 Documentation and continuity
Another important step we took after these changes were
made is to update the libmapper website19 with the most
recent links and documentation for installation and use. We
also added a number of recent related projects and publi-
cations to showcase the potential of the framework. Usage
instructions and build scripts have been updated for many
of libmapper’s bridges to make them easy to install and use
for any platform.
Though the changes presented here may seem obvious, it

16https://doc.sccode.org/Classes/Bus.html
17https://github.com/libmapper/Mapper4TD
18https://derivative.ca/
19http://libmapper.org

is important to realize why it has taken so long for them
to be implemented to avoid this barrier in related research
projects. For one, the rise of CI tools such as Github Actions
has only recently opened up the opportunity to automate
deployment using virtual environments. Aside from avail-
ability, this type of work is not easily justified as research,
pushing funding towards feature additions rather than the
maintenance and development required to make a project
available to a wider audience. We argue that this CI work
should be a compulsory part of user-facing research projects
to increase the feasibility of the projects for artists.

2.2 Creating a mapping session manager
Webmapper, libmapper’s most-used graphical interface for
mapping design, contains basic features for loading and sav-
ing mapping sessions using JSON structures. To address
more complex session management needs and improve the
portability of sessions, we have created a mapping session
manager Python module that can be used from the com-
mand line or imported as a library into other programs.

We call the module mappersession and have made it in-
stallable through pip similarly to libmapper20 to align with
the CI principles proposed in this paper. Using a Python
module permits session management to operate from any
Python program or a command line, and work is in progress
to extend the module for use in C/C++ programs. Run-
ning the session manager from the command line provides
a headless mode of session management suited well for au-
tomating the setup of artistic works. We have also written
detailed installation and usage instructions for the module
in its repository21 and public package to align with docu-
mentation standards for Python packages.

2.2.1 mappersession features
The mappersession module maintains backward compatibil-
ity with webmapper’s JSON structure, allowing the load-

20https://pypi.org/project/mappersession/
21https://github.com/libmapper/mappersession



ing of previously saved mappings with older versions of
webmapper. To improve the portability of session files, we
have designed a versioned JSON schema for storing informa-
tion about maps, user interface properties and signal values
a user chooses to be initialized once the session is loaded.
Aside from simple loading and saving, mappersession also

supports persistent sessions to handle devices disconnecting
and reconnecting. In a persistent session, the manager mon-
itors the libmapper signal graph and waits until all signals in
each managed map are present on the network before load-
ing the map, and reloads the map as necessary as its signals
reappear. In a distributed framework like libmapper, this is
an important feature for performances with many devices
to keep mappings active throughout the whole session.
We have also added the ability to load any number of

sessions at once, letting the user change the active session
with a libmapper signal representing the session index. By
mapping another signal to the index signal, we can explore
the effects of cycling through groups of mappings in real
time.

2.3 Improving signal readability
Aside from the distribution changes from Section 2.1, we
also focused on the readability and usability of the webmap-
per graphical session manager. Refining these rough edges
should make the program (and the framework) more ap-
proachable for artists designing mappings. We have also
implemented several bug fixes for Windows users, including
more readable network interfaces and improvements to net-
work interface selection and clean exiting of the program.
When mapping between signals that do not have their

own graphical visualizers, it can sometimes be difficult for
users to understand the behavior of the source signals or to
tune map processing expressions. For this reason, we have
added a simple signal value plotter to webmapper (Figure 2)
that can be opened for any signal on the network. A more
sophisticated standalone signal plotter that supports mul-
tiple signals, vectors and signal instances was also added to
the libmapper utilities22. This feature has proven useful in
the design of devices as well, using visualized sensor values
to adjust signal ranges in the firmware of the device.

Figure 2: Left: the real time signal value plotter in webmap-
per; right: a standalone signal plotter.

We also have simplified the signal displays in List and
Grid View by moving less-relevant metadata fields to a
tooltip rather than showing them in every box. Before this
change, each signal displayed its length, range, data type
and unit all within its box. While many of these fields are
useful when fine-tuning mappings, displaying them all in
each signal box can hinder the readability of larger lists of
signals. Instead, we have implemented a metadata tooltip

22http://libmapper.org/ecosystem/utilities

that appears when hovering over a signal (Figure 3), pro-
viding scalability for new fields and reducing visual clutter.

Figure 3: An example of signal metadata displayed as a
tooltip

3. EVALUATING THE CHANGES
We intend for the changes reviewed in this paper to increase
the usefulness and desirability of libmapper as a mapping
option for artists with little to no development experience.
To evaluate this claim, we have organized the creation of an
interactive audiovisual installation project by commission-
ing two artists with varying levels of technical experience.
The artists were able to make their own design choices to
create two distinct interactive sessions over the course of
one month but were constrained to using libmapper for their
signals and mappings. This project allowed us to evaluate
many of the changes to libmapper introduced in this paper
including ease of setup and operation, session management
and the mapping design process for artists. After describing
the installation design process and demonstration, feedback
from the artists is assessed to determine the impact of our
changes on the usability of the mapping framework and the
effectiveness of the development principles imposed.

3.1 Designing an interactive installation piece

3.1.1 Artist profiles
The sound artist is a professional software engineer experi-
enced with SuperCollider for live coding performances and
freelance works, using the MacOS platform for their devel-
opment. The visual artist, with rudimentary Python script-
ing experience, is proficient with TouchDesigner on their
Windows machine and has created interactive patches in
the past using the application’s integrated LeapMotion and
MIDI modules. While neither artist has used a distributed
mapping framework like libmapper before, both have expe-
rience with designing basic mappings with MIDI and OSC.
The diversity in the artists’ development experience and
platform preference presents a unique opportunity to exam-
ine the ease of setup and operation of libmapper throughout
the design of the installation.

3.1.2 Devices and programs
The installation was designed using a combination of tools
developed at the Société des Arts Technologiques (SAT)
and the Input Devices and Music Interaction Laboratory



Figure 4: Overview of the systems and interactions used in the evaluation project

(IDMIL). Three T-Stick DMIs [15] were used as input de-
vices, each providing 18 gestural signals made available on
the libmapper network and through OSC. The sound artist
used SuperCollider for synthesis, adopting the SAT’s open-
source SATIE plugin [2] for spatialization. The visual artist
created projection-mapped visuals with TouchDesigner, en-
abling us to test the program’s new mapping bridge. As
each of these systems is compatible with libmapper, we are
able to use the T-Sticks to control the audio and visual
signals in each program in real time.

3.1.3 The design process
The artists began by choosing a theme to connect the two
sessions, deciding upon representing human interactions with
nature and technology. The artists then set out to design
audio and visual patches for nature and technology, each
with their own set of mappable signals. To emphasize ex-
perimentation in the mapping design process, the artists
separately chose which signals from their programs to ex-
pose on the network and left mapping design for when the
patches were nearly complete.
Patches for TouchDesigner and SuperCollider were de-

signed by the artists using generic output models for audio
and video, utilizing SATIE’s abstracted models for sound
spatialization. The use of generic output models and dis-
tributed mappings makes the project portable to many types
of systems with different projection mapping and spatializa-
tion requirements.
Mapping design for the two sessions occurred during sev-

eral experimentation jams throughout the process with the
authors and artists, searching for mappings that were mean-
ingful to the piece. The ability of both artists to understand
the source signals from the T-Sticks and the destinations in
the audiovisual patches was an important requirement for
mapping ideation, leading us to create tables with detailed
signal descriptions and modulation examples. By virtue of
libmapper’s distributed approach, mapping ideas could be
created and tested easily without the need to change any of
the devices or patches.
The artists aimed for the interactions to mirror the theme

of each session by using continuous, flowing media and move-
ments for nature and discrete, abrupt ones for technology.
The final nature-themed session contained 19 maps and the
technology-themed session contained 27 maps, with control
divided between three T-Sticks. Shake, squeeze and ori-

entation signals were used with one T-Stick each, keeping
the devices consistent in their interaction types. All of the
systems and tools used in the installation can be seen in
Figure 4. All patches and mappings for each session have
been made open source as well to encourage further contri-
butions or reuse on other systems23.

3.2 Satosphére demo session
As the final stage of the artistic explorations proposed in
this project, the artists were invited to set a demonstration
of their created immersive space in the Satosphére. The
Satosphére, created in 2011, is a full dome with a diameter
of 18 meters, and is a permanent immersive modular theatre
dedicated to artistic creation and events24. This space is ca-
pable of 360-degree video projection and a complex speaker
setting using 157 speakers grouped to form 31 virtual speak-
ers organized around the dome. These characteristics make
the Satosphére an excellent candidate for testing the map-
ping capabilities of libmapper, webmapper, the bridges de-
veloped during this project, and SATIE’s ability to adapt
to different venues by invoking various spatializer presets.

Moreover, the Satosphére’s equipment is configured to
provide tools for artists to connect their devices. The con-
nections using audio and video on the Satosphére usually
employ Network Device Interface (NDI) as the standard
video transmission protocol and MADI-compatible devices
for carrying digital audio. This setup allowed the artists
to work individually in generating artistic content without
concern about how the devices will be connected at the
venue.

The same workflow was employed for the data stream-
ing. In that sense, using a decentralized signal mapping
framework using libmapper allowed artists to individually
work with their content and define which control parame-
ters would be exposed to be subsequently mapped during
the demo session. These control parameters were available
as libmapper signals, created using the bindings and bridges
described in Section 2.1.1.

Simultaneously, the first author could focus on creating
mapping sessions based on the libmapper signals (control
parameters) provided by the artists. This process allowed
modular prototyping while streamlining the setup for the

23https://github.com/IDMIL/
Human-Nature-Installation

24https://sat.qc.ca/en/satosphere



event. Each artist was able to simply connect with the
available network to automatically expose their libmapper
signals.

3.2.1 Overcoming on-site technical hurdles
We encountered multiple technical issues during setup. These
issues were not caused by the use of libmapper, but resulted
from networking and connectivity limitations of some de-
vices. Describing some of the issues we encountered might
be useful as a description of commonly found obstacles dur-
ing interactive demos, performances and installations. The
strategies we used to overcome these problems may be rel-
evant and applicable to future projects.
First, we noticed a large number of missing UDP packets

when more than one T-Stick was connected to the network.
This caused the T-Sticks to intermittently disconnect and
reconnect from the network, blocking the mapping session
from being fully active. Upon troubleshooting, the issue
was attributed to network problems regarding the particu-
lar model of microcontroller in the T-Stick. Working with
distributed mapping allowed us to program a quick on-site
fix in the form of an OSC-to-libmapper forwarding program
that discovers OSC signals, creates corresponding libmap-
per signals on the network, and forwards the signal values
through to libmapper. By modifying the point in the net-
work where the T-Stick libmapper signals were created, we
could overcome the issue, albeit by adding a bit of latency
to the pipeline. Nevertheless, the sessions were finally able
to connect all of the mappings on site the day it was devel-
oped.
Another hurdle appeared as we realized that the Satosphére

requires NDI over Ethernet for video, while libmapper re-
quires Wi-Fi for T-Stick connections. When encountering
issues when attempting to use both network interfaces at
once, we opted to utilize a Magewell HDMI-to-NDI con-
verter device25, avoiding the need to use the Ethernet in-
terface on the TouchDesigner machine.
Overall, the setup time and troubleshooting related to

mappings were straightforward in comparison with similar
events organized at the Satosphére, according to the venue
technicians. More importantly, assembling the individual
artists’ work into a cohesive installation posed little chal-
lenge as each libmapper device could be discovered over the
network, and the mapping session manager could automat-
ically restore all previously saved connections.

3.3 Feedback from artists
After the conclusion of the installation project, we inter-
viewed the artists to gather information about their expe-
rience using libmapper. We explored the effect of technical
experience on the ease of setup and use of the framework as
well as the resulting feasibility and desire to use it again in
the future. Additionally, we employed a well-known usabil-
ity survey to quantify the usability of the framework and
establish a baseline for future work.

3.3.1 Setup and operation
The visual and audio artists claimed that it was simple and
quick for them to install libmapper, webmapper and the
bridge for their respective programs and platforms. This
feat alone speaks to an increase in usability for artists across
platforms and technical levels as a result of the distribution
and CI principles implemented.

25https://www.magewell.com/products/
pro-convert-hdmi-tx

The audio artist had some initial trouble integrating Map-
perUGen into their preferred SuperCollider workflow as their
method of sequencing continuously created and destroyed
the libmapper signals, but we were able to find an alter-
native using the new signal Bus feature discussed in Sec-
tion 2.1.2. The visual artist was able to use their basic
Python skills to install libmapper and set up Mapper4TD
in TouchDesigner without issue by following the instruc-
tions in the Mapper4TD container. Each artist went about
choosing signals to expose on the network by experimen-
tation, often testing new audiovisual signals with various
T-Stick signals to get a sense of the effect on the patch and
to find desirable connections for the session.

3.3.2 System Usability Scale results
In addition to the informal interviews, we utilized the Sys-
tem Usability Scale (SUS) survey developed by [3] to estab-
lish a quantitative measure of the libmapper framework’s
usability. The SUS is calculated by aggregating user re-
sponses of a short 10-question survey into a score from 0 to
100, and is a useful tool for iteratively assessing the progres-
sion of usability in a system with a small sample size [1]. Af-
ter receiving responses from each artist, the individual SUS
scores were 72.5 and 40, producing a mean value of 56.25.
One observation from the results is that the artist working
as a programmer scored the framework much higher than
the non-developer artist. This indicates that the framework
requires additional work to become easily usable by artists
of all technical levels. As this is the first instance of a SUS
evaluation for libmapper, its score may also serve as a base-
line for future work toward the same goals.

3.3.3 Desirability of the framework
When asked whether they would be willing to use libmapper
in the future, both agreed that it would be a great fit for suf-
ficiently complex artistic projects like this one. Once they
had the concept of distributed signals and mappings“figured
out”, they enjoyed the visual style of designing mappings
with webmapper and recognized the benefits of libmapper
compared to MIDI and OSC. The positive feedback regard-
ing libmapper’s ease of setup and use for different platforms,
programs and technical levels points towards an increase
in usability from the framework’s previous state, and the
artists’ willingness to continue using the framework speaks
to its desirability.

4. CONCLUSIONS AND FUTURE WORK
This paper discussed several obstacles to users when using
libmapper, a distributed signal mapping framework, and
presented developments that aimed to increase its usabil-
ity and feasibility for artists without technical experience.
From the discussed barriers, we decided to address ease of
installation, management of mapping sessions, and read-
ability of libmapper signals. The evaluation project put the
changes in the hands of artists with the goal of creating an
interactive audiovisual installation.

The developed bridges and language bindings facilitated
the use of libmapper by artists inside the tools in which
they typically create artistic content (SuperCollider and
TouchDesigner) with minimal effort. The developments re-
garding mapping session management enabled individual
artist experimentation and fast connectivity between tools
when setting the demo installation. The readability of sig-
nals in webmapper aided the final demo setup and allowed
the development team to edit and experiment with map-



pings and troubleshoot issues in real time. Updating doc-
umentation and utilizing Github’s CI tools for automating
the building and distribution of the libmapper framework
improved its availability and installation process for artists.
Feedback from the artists led us to conclude that our devel-
opments have strengthened both the usability and feasibility
of libmapper for users of all technical levels.

4.1 Future Work
Though these developments are a step in the right direction
to support users, there is still more work to be done to im-
prove the distribution and usability of libmapper. Libmap-
per’s bridges should be built using Github Actions for CI
and distributed to each community’s package manager or
repository in order to increase visibility and get more feed-
back about the framework and grow a user community.
Many of the bridges also lack support for creating vec-
tored and instanced signals. These features unlock many
new opportunities for mappings, yet have remained largely
untested by users due to the lack of support from bridges.
Mappersession, the mapping session manager created dur-

ing this project, will be expanded upon as well by creating
a shared object library similar to libmapper to allow for use
in both Python and C programs. Though this will require
another large push for distribution and continuous integra-
tion, it’s important to have a session manager that can be
integrated into applications with any language.
The session manager currently makes some unsafe as-

sumptions about the state of the network, which may lead to
conflicts when multiple sessions are active. Future versions
will let users choose more rigorous methods of map staging
instead of persistently reconnecting any disconnected maps,
such as one-time staging to initialize a session as devices
appear. Webmapper’s integration with mappersession will
also be developed further to utilize mappersession’s abil-
ity to save and restore graphical data in sessions. Finally,
we are in the process of supporting TCP as well as UDP
for communicating map data to allow users to choose be-
tween prioritizing reliability or latency for their connections.
Additional SUS surveys should be conducted after each de-
velopment iteration to document the framework’s progress
toward becoming usable for artists of all technical levels.

5. ACKNOWLEDGMENTS
The authors would like to thank Mitacs and the SAT Meta-
lab for the resources and assistance as well as for providing
the opportunity to carry out this research. We would also
like to thank Angus MacMinn and Sara Adkins for their
hard work and feedback throughout the evaluation project,
Lukas and Noah Peterson for their guidance in the develop-
ment of the TouchDesigner bridge and the Centre for Inter-
disciplinary Research in Music Media and Technology for
its facilities and resources provided.

6. ETHICAL STANDARDS
This work is supported by a Discovery grant from the Nat-
ural Sciences and Engineering Council of Canada to the
fourth author and a Mitacs Accelerate internship partnered
with the Société des Arts Technologiques. There are no
observed conflicts of interest. The evaluation project was
conducted with two professional individuals who were for-
mally contracted and compensated for artistic work.

7. REFERENCES
[1] A. Bangor, P. T. Kortum, and J. T. Miller. An

Empirical Evaluation of the System Usability Scale.
Journal of Human–Computer Interaction,
24(6):574–594, 2008.

[2] N. Bouillot, Z. Settel, and M. Seta. Satie: a Live and
Scalable 3d Audio Scene Rendering Environment for
Large Multi-Channel Loudspeaker Configurations. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 404–409,
2017.

[3] J. Brooke et al. Sus-a Quick and Dirty Usability Scale.
Usability Evaluation in Industry, 189(194):4–7, 1996.

[4] F. Calegario, M. Wanderley, J. Tragtenberg, J. Wang,
J. Sullivan, E. Meneses, I. Franco, M. Kirkegaard,
M. Bredholt, and J. Rohs. Probatio 1.0: Collaborative
Development of a Toolkit for Functional DMI
Prototypes. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 21–25, 2020.

[5] R. B. Dannenberg and Z. Chi. O2: Rethinking Open
Sound Control. page 494, 2016.

[6] S. de Laubier and V. Goudard. Puce muse –la
méta-mallette. In Journées d’Informatique Musicale,
Albi, France, 2008.

[7] S. Ferguson and M. M. Wanderley. The McGill Digital
Orchestra: An Interdisciplinary Project on Digital
Musical Instruments. Journal of Interdisciplinary
Music Studies, 4(2), 2010. Number: 2.

[8] C. Frisson, M. Bredholt, J. Malloch, and M. M.
Wanderley. Maplooper: Live-Looping of Distributed
Gesture-to-Sound Mappings. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, 2021.

[9] E. Ghomi. Designing Expressive Interaction
Techniques for Novices Inspired by Expert Activities:
the Case of Musical Practice. PhD thesis, l’Université
Paris-Sud XI, December 2012.

[10] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig. Usage, Costs, and Benefits of Continuous
Integration in Open-Source Projects. In Proceedings
of the International Conference on Automated
Software Engineering, pages 426–437. IEEE, 2016.

[11] M. Kirkegaard, M. Bredholt, C. Frisson, and
M. Wanderley. TorqueTuner: A Self Contained
Module for Designing Rotary Haptic Force Feedback
for Digital Musical Instruments. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 273–278, 2020.

[12] J. Malloch. A Framework and Tools for Mapping of
Digital Musical Instruments. PhD thesis, McGill
University, December 2013.

[13] J. Malloch, S. Sinclair, and M. M. Wanderley. A
Network-Based Framework for Collaborative
Development and Performance of Digital Musical
Instruments. In International Symposium on
Computer Music Modeling and Retrieval, pages
401–425. Springer, 2007.

[14] J. Malloch, S. Sinclair, and M. M. Wanderley.
Generalized Multi-Instance Control Mapping for
Interactive Media Systems. IEEE MultiMedia,
25(1):39–50, 2018.

[15] J. Malloch and M. M. Wanderley. The T-Stick: From
Musical Interface to Musical Instrument. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 66–70, 2007.



[16] T. Mays and R. Rubiano. Tapemovie : un
environnement logiciel pour la creation temps reel
intermedia. In Journées d’Informatique Musicale,
pages 1–7, Rennes, France, 2010.

[17] STEIM. junXion. Online archive:
https://web.archive.org/web/20201112000658/

https://steim.org/junxion/.

[18] D. A. Stewart and J. Malloch. Everybody to the
Power of One, for Soprano T-Stick. In CHI’10
Extended Abstracts on Human Factors in Computing
Systems, pages 3093–3096, 2010.

[19] J. Wang, J. Malloch, S. Sinclair, J. Wilansky,
A. Krajeski, and M. M. Wanderley. Webmapper: A
Tool for Visualizing and Manipulating Mappings in
Digital Musical Instruments. In Proceedings of the
International Symposium on Computer Music
Multidisciplinary Research, page 823, 2019.

[20] T. West, B. Caramiaux, and M. Wanderley. Making
Mappings: Examining the Design Process. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2020.


