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Abstract

This thesis explores solutions to smooth the challenging path for digital musical instruments

(DMIs) and mapping tools to reach a state of maturity and usability by artists, discussing develop-

ment and design practices with the goal of producing easy-to-set-up, stable, and well-documented

academic projects. The concepts of technical maturity and stability are de�ned, using the user's

perspective to introduce qualities of devices in music technology that support maturity. Barriers

to these attributes are reviewed from literature, discussing the lifecycle tendencies of projects de-

veloped in research contexts based on design intents. Possible solutions to these barriers are then

applied to two main case studies: 1) the development of the Slapbox, a responsive, reliable and

replicable percussion DMI designed for intensive musical use, and 2) the expansion of libmapper,

a distributed mapping framework created at the Input Devices and Music Interaction Laboratory

(IDMIL), to address challenges to its setup, operation and integration with popular artistic tools.

Evaluations with artists are then conducted for both projects to determine the e�ects of the pro-

posed practices on the usability of novel DMIs and mapping tools. Finally, the implementations

and results from each project are summarized, proposing paths for future work and describing

applications to other projects.
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Résumé

Cette thèse explore des solutions pour permettre aux instruments de musique numériques (DMIs)

et aux logiciels de mappage d'atteindre un état de maturité et de faciliter leur utilisation par des

artistes. Nous discutons plusieurs pratiques de conception et d'implémentation de systèmes dans le

but de produire des outils faciles à con�gurer, stables et bien documentés. Les concepts de matu-

rité technique et de stabilité sont dé�nis, en utilisant la perspective de l'utilisateur pour introduire

les qualités des appareils dans la technologie musicale pour qu'ils atteignent un niveau donné de

maturité technique. Les obstacles à ces objectifs sont passés en revue à partir de la littérature, en

discutant des tendances du cycle de vie des projets développés dans des contextes de recherche à

partir des intentions de conception. Les solutions possibles à ces obstacles sont ensuite appliquées

à deux études de cas principales: 1) la conception du the Slapbox, un DMI de percussion réactif,

�able et reproductible conçu pour une utilisation musicale intensive, et 2) l'expansion de libmap-

per, un logiciel de mappage distribué créé à le laboratoire de dispositifs d'entrée et d'interaction

musicale (IDMIL), pour relever des dé�s de con�guration, de fonctionnement et de l'intégration

avec d'autres outils artistiques populaires. Des évaluations avec des artistes sont ensuite menées

pour les deux projets a�n de déterminer les e�ets des pratiques proposées sur l'usabilité des nou-

veaux DMI et des outils de mappage. En�n, les implémentations et les résultats de chaque projet

sont résumés, proposant des pistes pour les travaux futurs et décrivant les applications à d'autres

projets.
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Chapter 1

Introduction

1.1 Mature musical devices

The rise of digital technology has transformed the way music is produced, recorded, performed

and experienced. These developments have brought forth a new type of device, the digital musical

instrument (DMI), that is able to separate the physical connection between gesture and sound

that binds acoustic instruments (Wanderley, 2001). Today, research and commercial settings are

over�owing with new and innovative digital musical tools, yet few are reaching the maturity to

become viable for artists to include in their repertoire. As Jordà (2004) writes:

�Many new instruments are being invented. Too little striking music is being made

with them.�

This observation is especially relevant in research contexts, where the majority of recently

created DMIs are made for the researcher alone, often becoming unusable after the project's

completion (Morreale & McPherson, 2017). Whether this is a result of design shortcomings,

research intents or external in�uences, it poses a problem for future researchers aiming to build

upon these works. Artistic research such as DMI design requires the ability to achieve long-term

practice in order to establish objectivity in its �ndings (Hannula, 2008). If claims from DMI

research are to gain the trust of other researchers, devices created in research require a stronger
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focus on replicability and documentation (Calegario et al., 2021) as well as stability and reliability

(Sullivan & Wanderley, 2018) to support their continued evaluations.

1.2 Digital musical instruments

In DMIs, gestural information captured by sensors is mapped to parameters in a sound-producing

program (Wanderley & Depalle, 2004). The mapping between gesture and sound determines the

behavior of the instrument, enabling a single control surface to produce many types of sounds

depending on its mappings to the parameters of a synthesis program (Hunt et al., 2003). The

simplest type of mapping between musical signals is a one-to-one connection, where an input

signal directly drives an output. More complex relationships between signals such as convergent

mappings (many-to-one) can result in a parameter depending on multiple inputs to compute its

value. Divergent mappings (one-to-many) result in one signal controlling multiple audio param-

eters at once. Figure 1.1, presented in Wanderley (2001), visualizes the relationship between the

gestural controller and the sound producer. Mapping can also be explored through a functional

lens by de�ning mathematical expressions (functions) relating one or more input signal(s) to an

output (Caramiaux et al., 2014). To relate gestural signals to audio signals using more meaningful

representations, intermediate mapping layers can also be created (Hunt & Wanderley, 2002).

Fig. 1.1 Relationship between gestural controllers and sound sources, adapted from
Wanderley (2001).
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Signal mapping can be applied to computer-generated visuals, haptics and sound spatialization

as well to enrich interactions made by performers or the audience. By connecting signals between

sensory modalities, artists can more fully express their intents and immerse the audience in their

pieces. This distribution and variety of signals used to create sound makes it di�cult to de�ne

what a DMI is. Therefore, in this thesis, the term DMI will refer to any interactive digital system

that produces sound in real time. In order to simplify the phrasing throughout this thesis, the

well-established acronym NIME (New Interface for Musical Expression) will be used when referring

to the category consisting of both DMIs and mapping tools.

1.3 Mapping frameworks

Connecting gestural controllers to sound sources with complex mappings can provide noticeable

performance bene�ts when compared to one-to-one mappings (Hunt et al., 2003). Currently, sup-

port for user-designed convergent and functional mappings is not implemented in most commercial

production environments, often restricting users to linearly scaled one-to-one connections.

Several standards and libraries have emerged for sending musical signals between gestural

controllers and sound processors. The Musical Instrument Digital Interface standard (MIDI) is

perhaps the most popular protocol for sending simple musical signals between devices. Though its

adoption is widespread, MIDI lacks �exibility for data types and ranges outside of its standard,

which can restrict the user's ability to express their sonic intents (Moore, 1988).

The networking protocol Open Sound Control (OSC) allows the design of custom namespaces

for signals. This freedom is an attractive feature for researchers using complex gestural data, but

results in one-o� implementations for devices that are unable to be used for other purposes. A

few libraries have been created to address some of OSC's limitations such as device connections

(Dannenberg & Chi, 2016) or signal discovery1, but still rely on the user to �nd their own method

of creating dynamic mappings to devices. The original authors of OSC imagined that compatibility

would be achieved through the use of common schemas de�ning signal names and data types.

1https://github.com/vidvox/oscqueryproposal
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In development since 2007, the open-source library libmapper (Malloch et al., 2007, 2013)

(further discussed in Section 4.1) aims to resolve the issues of compatibility in a di�erent way.

Instead of devices agreeing on a common signal representation, each device de�nes the signals

that it sends and receives independently. Once registered with libmapper, devices, signals and

other metadata can be discovered through multicast networking, and signal datastreams can be

freely connected with libmapper handling any necessary translation, type coercion, and vector

truncation or padding so that the destination always receives messages it knows how to process.

Runtime connections between signals (called �maps�) also embed con�gurable processing and other

metadata, and can be managed over the network using OSC messaging or an arbitrary number

of session managers such as webmapper (Wang et al., 2019) or mappersession2. Users of the

libmapper application programming interface (API) are encouraged to use �strong semantics� and

real units when designing device and signal representations; if they choose to de�ne ranges for

signals, new maps will default to linear scaling. Libmapper supports the design of many types of

mappings not supported by other tools including convergent and functional mappings.

Some commercial music production environments have developed their own solutions for de-

signing mappings, such as Ableton Live's Connection Kit3 and Bitwig's modulation system4. These

tools are capable of creating simple mappings, yet do not support more complex mapping types

from literature (e.g., functional, convergent).

1.4 Entry and operation fees

According to Wessel and Wright (2002), musical devices should have �a low `entry fee' with no

ceiling on virtuosity.� In other words, NIMEs should be simple and straightforward to set up

and use, while having no discernible limit to the expertise that can be developed with the device.

Though the requirement for no virtuosity ceiling has been challenged (Bowers & Archer, 2005),

it is generally agreed-upon that NIMEs should be easy to pick up and play, which has been a

2https://github.com/libmapper/mappersession
3https://www.ableton.com/en/packs/connection-kit/
4https://www.bitwig.com/learnings/an-introduction-to-modulators-45/
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challenge for many recent DMIs (Morreale & McPherson, 2017).

Instruments that embrace innovations in mapping methods often contain additional barriers

for entry, requiring the installation of experimental applications that lack the stability to instill

con�dence in the user. Novel mapping design concepts and interfaces can also be unfamiliar to

artists (West et al., 2020) as there is no established guide for designing mappings (Medeiros et al.,

2014), leading to another competency condition to be ful�lled before any meaningful sounds can be

produced. Gaps in system compatibility for preliminary software can render the NIME unusable

over time, with poor documentation repressing any chance of its eventual repair. In this way, the

advantages of distributing systems to favor mapping �exibility come at a cost to usability if the

systems are not developed to a stable and mature state. This thesis explores challenges to this

goal of maturity and applies potential solutions from literature to two projects to evaluate their

impact.

1.5 Structure of this thesis

This thesis has �ve chapters:

1. Introduction.

2. Maturity in NIMEs, where the concept of maturity is introduced, citing challenges and

solutions from literature.

3. DMI case study: the Slapbox, where I present a redesigned DMI with the goals of

supporting reliability and replicability.

4. Mapping tool case study: libmapper, where I describe recent developments to a dis-

tributed mapping framework to promote usability by artists.

5. Conclusions and future work, where research results are summarized and suggestions

for future work are provided.
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1.5.1 Adaptation of publications

Parts of this thesis are adapted from three of my recent publications. The Slapbox design and

evaluations presented in (Boettcher, Sullivan, & Wanderley, 2022) appear in Chapter 3. Chapter

4 includes recent developments to libmapper documented in (Boettcher, Malloch, et al., 2022) and

(Boettcher et al., 2023).
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Chapter 2

Maturity in NIMEs

This chapter begins by de�ning a set of attributes for DMIs and mapping tools that mark a state

of maturity. Common challenges to achieving these qualities are then introduced, citing solutions

provided in literature impacting the design and development process. The challenges are discussed

in terms of their resolvability, narrowing our focus to particular design and development principles

that support usability and stability.

2.1 Qualities of a mature NIME

Let us begin by imagining the goal of a mature NIME: a tool with a long-standing, far-reaching

community built around its use, a simple and well-documented setup procedure and an expanse

of publicly available resources demonstrating its capabilities. If attainable, its source code should

be documented and extensible, following development practices to support future work. This

NIME's performance is always reliable, it is compatible with all systems and is always available

to be bought or built. Notably, these properties have little to do with performance (e.g, latency,

expressivity), and instead focus on the NIME's usability by artists and stability for future work.

Granted, many of these expectations may be prioritized higher in commercial contexts, yet they

also have value in research as discussed in Section 1.1. Much of the engineering work required

to obtain them can be di�cult to justify in research, and may not be primary requirements in
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smaller projects that target a particular behavior. Ephemerality has also been claimed as an

intrinsic modality of DMIs and their performance, having faith that great musical works will

naturally emerge and be sustained (Goudard, 2019). Regardless, there is a trend of archived

NIMEs that are in unusable states (Morreale & McPherson, 2017) that warrants an exploration

into possible solutions to support their continued use and development. In this thesis, I have

chosen to focus on particular qualities present in mature NIMEs that reinforce long-term use by

artists and researchers: usability, replicability, availability, signal compatibility and community

support.

2.2 Challenges and solutions from literature

In order to create a network of priorities that support maturity for NIMEs, I will begin by de�ning

the qualities mentioned above in greater detail, exploring the di�culties involved in enforcing each

of them over a long period. Methods of evaluating the success of each property are also presented

from literature, introducing design and development practices to support maturity.

2.2.1 Usability and reliability

The term usability has many di�erent de�nitions from various �elds, with the most recognized

coming from ISO 9241: �the extent to which a system, product or service can be used by spec-

i�ed users to achieve speci�ed goals with e�ectiveness, e�ciency and satisfaction in a speci�ed

context of use� (Ergonomics of Human-System Interaction � Part 210: Human-Centred Design

for Interactive Systems, 2019). Often, the �rst goal speci�ed for NIMEs is to get set up with the

device and produce sounds. As discussed in Section 1.4, the separation of gestures, mapping and

sound tools can result in unexpected entry barriers for artists setting up a new NIME. Commu-

nicating between gestural controllers and sound-producing programs in real time can produce its

own technical and artistic issues as well (Staudt, 2016).

One approach for overcoming these barriers is to design standalone DMIs (i.e. self-contained

instruments with embedded sound synthesis) (Sullivan, 2021). Instead of making the artist respon-
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sible for designing mappings, standalone DMIs contain internal mappings between their control

surfaces and their synthesis programs. This lowers the barrier for entry considerably, as the DMI

can be picked up and played immediately. The internal mappings in standalone DMIs can be

either �xed presets or modi�able by the user. If the presets are editable, the user bene�ts from

the DMI's instant playability without losing �exibility in designing their own mappings.

Prototyping and iteration

A straightforward way of discovering how a tool is interacted with and perceived is by prototyping

its design. Prototypes allow NIME designers to quickly create proofs of concept for their designs,

using quick decisions to expedite the design process (Calegario et al., 2017). The modular DMI

design framework Probatio was developed expressly for this purpose (Calegario, Wanderley, et

al., 2020), enabling designers to rearrange modules containing various sensors and independently

design mappings for the instrument. Non-functional DMI prototyping is useful as well and has

been used to evaluate social and cultural design in�uences of musicians (Lepri & McPherson,

2019). After prototyping is complete, designs require additional work to improve their reliability.

Relating to prototyping, iterating on designs allows designers to continually address shortcom-

ings of their product after receiving feedback from users (Preece et al., 2015). Evaluations should

consider factors of practice (the performer's perspective) and interactions (the designer's perspec-

tive) to determine possible improvements to the design (O'Modhrain, 2011). This process can take

years to reach the designer's state intended by the designer (Medeiros et al., 2014), stretching well

beyond the timeline of many research projects. In order to verify progress in a NIME's usability,

designers can have users complete a System Usability Scale (SUS) survey after each iteration to

assess the progression of usability in a system (Bangor et al., 2008). The SUS survey, originally

proposed by Brooke et al. (1996), is calculated by aggregating results from a quick 10-question

interview to produce a quantitative estimate of the system's usability that can be used by future

researchers aiming to improve the NIME. Relating to this objective of keeping projects alive, the

next set of qualities supports continued work from other sources even after the original designer
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steps away from the project.

2.2.2 Replication and availability

Replication has many advantages for NIMEs, including the exploration of new performance con-

texts and veri�cation of previous evaluations (Calegario et al., 2021). Documentation supports

this quality by providing instructions for rebuilding or redesigning a NIME. For hardware, this

includes providing a bill of materials (BOM), fabrication �les and detailed construction and usage

instructions. The choice of sensors, fabrication materials and software libraries can also a�ect

a DMI's replicability. Obsolete materials and software are common occurrences for NIMEs, and

designers should choose stable, well-documented tools and parts for their devices (Calegario et al.,

2021).

In software, it is important to utilize good development principles from the start, organizing

code into modules and providing documentation to explain useful methods and algorithms (Agusa,

2004). Many synthesis programs and mapping tools are implemented as dynamically loaded plu-

gins, capable of being operated in multiple applications. This modularity makes the tools more

extensible and reusable, yet creates additional technical barriers for installation and distribution

(Chiprianov et al., 2011).

DMI redesigns and rebuilds have appeared sparsely in literature addressing various aspects of

the design process. Cook (2009) focuses on presenting important redesign principles such as build-

ing multiple copies, implementing backward compatibility and documenting electronics. While

Cook redesigned their own instrument, Tom et al. (2019) took up the challenge of reconstructing

the interactions from a �exible DMI called The Sponge. The authors were required to reinterpret

much of the original instrument's fabrication, mapping and synthesis methods as there was no in-

formation available regarding its BOM or software patches. Despite these challenges, the authors

state that they were able to learn more about the original instrument while �nding ways to use new

technology to improve its capabilities. Replicability makes it possible for iteration to take place

without the original designer, continually improving designs and preventing abandonment. This
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property is especially relevant for research projects, where there is a high turnover of researchers

due to program lengths.

Open source and continuous integration

Making the hardware documentation and/or software sources publicly available, or open source, is

an important factor in increasing replicability and extensibility for NIMEs (Calegario, Tragtenberg,

et al., 2020). Contributions made by the public can be directly merged into the main repository by

the project's maintainer(s) using software version control systems such as Git1 and Subversion2.

Responsibly open sourcing a project requires more than making the project available, though, and

includes licensing, documentation, testing, packaging and distribution (McFee et al., 2018).

Open source projects typically place licensing restrictions on the use of the tool in commercial

endeavors, encouraging the continuation of the open source philosophy. The issue of poor software

documentation often arises from its tedious and persistent nature, making it di�cult for the end

user to work out its setup and operation for inadequately maintained repositories (Heron et al.,

2013). Though not typically prioritized in NIME research, the creation of test programs can

dramatically reduce debugging time and validate that new changes don't break existing functions

(Harrold, 2000).

Continuous integration (CI) practices automate the compilation, testing and distribution of

software, reducing long-term development costs and allowing for more frequent releases and contri-

butions (Hilton et al., 2016). Commercial version control hosting toolchains such as Github3 and

Bitbucket4 include many of these CI tools, allowing developers to verify, compile and distribute

their changes as soon as they are made for all platforms. The technical barriers for entry to

these tools are relatively low, and can leave the project in a much more workable state for future

developers. CI tools are often able to automatically distribute the compiled software to package

managers for new releases, making it easy for end users to retrieve updates. In order to encourage

1https://git-scm.com/
2https://subversion.apache.org/
3https://github.com/
4https://bitbucket.org/product/
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many of these practices for maintaining open source DMIs, Calegario, Tragtenberg, et al. (2020)

have proposed a certi�cation process to rate the replicability of DMIs by external designers and

developers.

2.2.3 Signal compatibility

An issue of signal compatibility between systems results from the separation of gestures and sound

in DMIs. As discussed in Section 1.3, several communication and mapping frameworks such as

MIDI, OSC and libmapper have been created to address compatibility issues in musical devices.

Although MIDI is prized for its widespread use and simplicity, it contains data representation

limitations and lacks internal signal mapping support that other frameworks address (Moore,

1988). Developers have the option of supporting multiple modes of communication with their

NIME, yet each implementation adds to the development costs of the project. This presents

NIME designers with a di�cult choice between compatibility and capability. For this reason, DMIs

commercialized through crowdfunding campaigns lean heavily toward MIDI for communication to

make the device available to the most widespread audience (McPherson et al., 2019). Compatibility

with systems is a continuous obstacle for NIMEs, as devices may be rendered obsolete while trends

in preferred communication methods evolve.

2.2.4 Community support

One of the primary issues in�uencing the longevity of NIMEs built for research is the absence of

a stable support community around the tool. Marquez-Borbon and Martinez Avila (2018) state:

By taking a global perspective and moving away from the individual, it is expected

that a shared knowledge and experience amongst the individuals within a group can

yield both novel and lasting musical practices with a particular system.

Building a community around a NIME provides many bene�ts, such as increasing awareness

and fostering the growth of its performance and pedagogical practices. Unfortunately, DMIs born
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from research are often designed for the creator's artistic requirements, a quality that may constrain

the instrument's performances to a particular style and prevent the engagement of other musicians

(McPherson & Kim, 2012). Several studies have taken up the goal of building communities around

a NIME with varying approaches. McPherson and Kim (2012) and Fukuda et al. (2021) organized

the creation of performance communities around a DMI, while Morreale et al. (2017) built a maker

community around a NIME-building hardware platform. Although these studies demonstrated the

importance of continued performance with a community of artists, it can be di�cult for NIME

designers in research to prioritize community building as this often falls outside of the scope of

the project.

2.3 A network of design and development priorities

In the previous section, several qualities were reviewed that support maturity in DMIs and mapping

tools. Design intents and project scopes in research are often constrained to favor new develop-

ments (hence the N in NIME) rather than stability, bene�ting the �eld's initial explorations but

hindering veri�ability. Instead of insisting on the implementation of all solutions presented above

for every project, I present a network of priorities for NIME designers to support maturity as

design intents expand. The following discussion assumes the perspective of a designer aiming to

create a fully mature NIME, using Figure 2.1 as a guide for responsibilities over time.

Fig. 2.1 A network of design and development priorities to support maturity.
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As seen in Figure 2.1, the design process begins with the prototyping stage. Stable software

platforms and libraries should be utilized to improve longevity and encourage replication. Hard-

ware parts used for fabrication should similarly be chosen to prioritize availability and replicability.

Next, the designer begins the loop of iteration and evaluation, making design changes and con-

ducting user evaluations to receive feedback for subsequent iterations. Evaluations with artists

can lead to the start of a community of users around the NIME as well. Though not an early

priority, user feedback regarding the NIME's signal compatibility may lead to implementations of

additional modes of communication or application bridges, which in turn may make the NIME

available to more communities. After each iteration, the design's documentation should be up-

dated to re�ect the changes. This includes compilation and installation instructions for software

and fabrication details for hardware, if applicable.

Next, the designer can utilize CI tools to automate the testing, building and distribution of

their documentation and software components. The results from testing software may in turn lead

to further iterations of �xing bugs and performance shortcomings. CI stabilizes the contribution

process and can streamline many of the tedious steps involved in maintaining a large project such

as cross-platform compilation and packaging, allowing designers to focus on more iteration loops.

Following the project's distribution to users, community building can be fostered by providing

consistent and reliable sources for software and documentation.

2.4 Summary

This chapter presented the qualities of a stable and mature NIME, focusing on design and de-

velopment practices that support them. Next, an in-depth analysis of the challenges facing the

attainment of each quality was organized, citing potential solutions from literature. Finally, I

introduced a network of design and development priorities to guide designers in supporting their

NIME's maturity. The priority network presented above will be applied to two NIMEs in the

following two chapters, one DMI and one mapping tool, to evaluate their impact on supporting

each project's maturity.
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Chapter 3

DMI case study: the Slapbox

This chapter discusses the redesign of a standalone percussion DMI to support usability and

replicability. The original instrument, the Tapbox, though completed, su�ered from reliability

issues that precluded it from being viable for performance. The new design, the Slapbox, addresses

these shortcomings and expands the interaction possibilities of the instrument.

First, the design goals and shortcomings of the Tapbox are introduced, followed by a discussion

of the redesign and its subsequent iterations. Evaluations with percussionists are conducted,

receiving feedback regarding the new instrument's usability and responsiveness.

Parts of this chapter have been adapted from Boettcher, Sullivan, and Wanderley (2022), where

the Slapbox redesign was �rst presented.

3.1 Introducing the Tapbox

3.1.1 The Tapbox design

The Tapbox (seen in Figure 3.1) was created as a part of a family of instruments called Noiseboxes,

each with the goal of instant playability (pick it up and start playing), tightly coupled input to

sound mapping, direct sound output, and wires-free operation (Sullivan, 2015). Several versions

of Noiseboxes were constructed, all maintaining the same basic input controls (primarily buttons,
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linear FSRs and IMU-based motion sensing) and sound output (FM synthesis-based polyphonic

drones) (Sullivan et al., 2020).

Physical design

The interaction style of the Tapbox was inspired by the cajón, a box-shaped percussion instrument

played with the hands. Each side of the box functioned as an interaction surface, detecting strikes

from the musician and synthesizing sounds based on the interaction's properties.

One surface was reserved for necessary auxiliary controls and connection points, while the

remaining �ve sides functioned as input devices that could be mapped to di�erent sounds. To

detect strikes from the player, a large piezoelectric element was attached to the underside of

each acrylic side panel, while rubber bushings isolated the panels from the 3D-printed frame.

Orientation sensing was also added to the Tapbox, with data modulating the sound in di�erent

ways.

Fig. 3.1 The Tapbox, showing the Top panel with its piezo sensor and the front
control panel with speakers, originally presented in (Sullivan, 2021).
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Sound synthesis and modulation

Two synthesis modes were developed for the Tapbox, including a conventional drum kit and a

physical modeling synthesizer capable of generating a variety of sounds, from percussive bell-like

tones to complex, multi-timbral drones. A unique feature of the instrument was the method of

selecting and interpolating between the two synthesis modes which leveraged the Tapbox's IMU-

based orientation sensing capability. Additional modulation parameters for both synthesis modes

were mapped to rotational axes as well so that the instrument could produce a wide variety of

percussive and non-percussive sounds depending on its position and movement.

3.1.2 Challenges for maturity

Once the Tapbox's original design was complete, it still su�ered from issues that precluded it from

being viable for artists. In particular, I focused on identifying shortcomings in its performance

reliability and interaction methods, which ultimately led to the development of the new Slapbox

instrument.

First, despite successful setup and performance with the instrument, I was disappointed with

the Tapbox's ability to reliably detect interactions. Amplitude sensitivity was poor, and there

was an abundance of missed detections when striking anywhere other than the direct center of

a panel. While the piezoelectric sensors performed well in testing, the thickness and size of the

panels dampened their signals too much to accurately detect strikes at any position.

Second, the types of physical interactions were similar in all panels, given the use of the same

materials and sensors in all �ve sides, preventing exploration of other types of physical interac-

tions (e.g., continuous control, positional sensing) with the instrument. Finally, the instrument's

construction and software was sparsely documented, hindering its replicability. Iterating upon the

instrument's design allowed me to improve both the performance and interaction shortcomings I

had discovered throughout its evaluation.

To determine the work needed for an improved design, the Tapbox was evaluated in terms of
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its enclosure and interaction surfaces to search for reusable components in the device. To retain

the standalone functionality of the original design, the front panel's speakers and auxiliary control

inputs were preserved. Much of the Tapbox's internal electronics including the microcontroller,

audio and power circuits are reused, with both designs operating on the Bela1 platform which

enables low-latency audio and sensor acquisition.

3.2 The Slapbox redesign

The Slapbox is a percussive instrument that is a redesign of the Tapbox, o�ering several interac-

tion surfaces to be tapped, brushed, and slapped. Interactions give users real-time control over

modulation e�ects using the same drumming surfaces, aiming to further explore the uses of mod-

ulation gestures in percussive performances. The Slapbox was designed with two primary goals

to address the limitations of the Tapbox: 1) accurately and reliably detect interactions, and 2)

ensure replicability with thorough documentation of the design and its software which has been

made available online2.

3.2.1 Interaction methods

Panel layouts

The box's top panel contains two large position-sensing pads and two buttons that change the

playback speed of the audio. To provide visual feedback to the user, light emitting diodes (LEDs)

are positioned around the top panel to light up when the corresponding pad is struck or held.

Each side panel functions similarly to the position sensing pads on the top panel, detecting the

strike position relative to the side's center. A ridged guiro-inspired component lies in the middle

of the back panel to enable rhythmic sliding gestures with small pressure pads on either side of it.

Velocity, pressure and position are tracked by all components except for the small pads on either

side of the guiro, which track only velocity and pressure. Each panel is covered with a 1mm layer

1https://bela.io
2https://gitlab.com/bboettcher31/velostat-drum
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of cork, which provides a smooth tactile feeling without a�ecting the accuracy of sensor readings.

The completed assembly can be seen from both sides in Figure 3.2.

Fig. 3.2 The Slapbox design. Left : Top and front speaker/auxiliary control panels.
Right : Top and guiro side. Note the (red) buttons and LED positions in the Top
panel.

Sensor evaluations

Capturing the position, continuous pressure and velocity of percussive gestures requires transducers

that can sense extremely quick body movements. Although there exist many sensors that are

capable of extracting percussive gestures (Tindale et al., 2005), the design goals and constraints

of this project eliminate several options from consideration.

The use of rigid acrylic panels as interaction surfaces instead of �exible membranes rules out

re�ective optical sensors as candidates, which have been used to accurately detect strike positions

(Sokolovskis & McPherson, 2014). As our design intends to be played with the user's hands,

approaches that typically track stick motion such as cameras, electromagnetic sensors and ac-

celerometers do not apply. Fiberoptic sensors have been used to sense multitouch pressure (Huott,

2002), but their lack of commercial availability and shape variations would impede the instrument's

replicability. Microphones and piezoelectric sensors are able to extract and classify percussive ex-

citation gestures as seen in (Jathal & Park, 2016) and (Sullivan et al., 2020) respectively, but fail

to capture the continuous pressure of modulation gestures. Additionally, trials with the panel-
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mounted piezoelectric sensors on the Tapbox resulted in leakage peaks when striking the frame or

adjacent panels, and mounting the sensor between an additional acrylic layer also dampened its

signal leading to unreliable velocity estimation.

This leaves us with force-sensitive resistors (FSRs), which are able to sense continuous pressure

and come in a variety of shapes, sizes and sensitivities. A number of con�gurations were considered,

including standalone FSRs from commercial sources and homemade sensors built from resistive

materials that can be con�gured to detect pressure (Koehly et al., 2006).

Though both commercial and homemade FSRs are able to track pressure, the shape restrictions

of commercial models do not allow for the position sensing capabilities a�orded by homemade

sensors. Pressure-resistive materials like Velostat can be con�gured to detect continuous position

by arranging patterns of conductors above and below the material. Compared to other pressure

resistive materials seen in (Koehly et al., 2006), Velostat's consistency and robustness led to its

use for the Slapbox's sensors. It should be noted that a combination of di�erent sensing types can

be used to reinforce the accuracy and consistency of extracted gestures as seen in (Kapur et al.,

2004), and these methods may be applied to future iterations of the Slapbox. The comparison of

capabilities for commonly used percussive sensors can be seen in Table 3.1.

Table 3.1 Percussive sensor comparison

Velocity Continuous Pressure Position

Re�ective optical

Video and IR

Electromagnetic

Accelerometer

Fiberoptic

Microphone

Piezoelectric

Force Sensitive Resistor

Velostat
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Sensor design

Velostat can be con�gured to detect taps using either of the circuits shown in Figure 3.3. Drum

pads for the top and side panels are created with the sandwich circuit option by placing rings

of copper tape concentrically around each other (shown in Figure 3.4), con�guring each ring as

a voltage divider with Velostat as the variable resistor. The concentric con�guration was chosen

to track the tap position relative to the center of the pad, imitating the behavior of a circular

drum head. The top pads contain �ve rings each while the side pads only had room for three,

resulting in slightly less resolution in the side panel's position estimations. Slots are laser cut into

the panels to pass the top and bottom conductors through to the inside of the box for connection.

The sensing range for the drum pads was increased by adding an additional layer of Velostat to

each pad. This modi�cation resulted in more accurate velocity estimations and added room for

lighter impulses to be detected.

One important drawback to the concentric ring pads is their ability to detect multiple contact

points on the same surface. While this con�guration achieves concentric position sensing using

only a few sensing inputs to the microcontroller, each ring is only able to detect one interaction

at a time. This limits the types of detectable �nger drumming techniques, and could be improved

in a later iteration by using a di�erent (and more dense) conductor con�guration.

Variance in surface area in the conductive strips was found to lead to uneven steady-state values

for each ring due to larger conductive areas allowing more charge through the resistive material.

This inconsistency required normalization to detect the centroid accurately by distributing the

signal values linearly between their minimum resting values and a common maximum shared by

all pads, which is an available function in the graphical user interface presented later on.

Both the guiro and its neighboring small pads were tested using Figure 3.3's gap circuit, but

experiments showed that this con�guration was only accurate when pressing directly in the middle

of the gap. Using the sandwich circuit for all components on the back panel (seen in Figure 3.5)

resulted in usable signals, but required too much force to detect natural brushes across the ridges.
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Fig. 3.3 Velostat sensors: Sandwich (top) and gap (bottom) con�gurations.

Fig. 3.4 Details of the drum pad design showing individual layers of the sensor
con�gurations.
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In a later iteration of the back panel, the guiro was replaced with 3D printed ridges of conductive

Polylactic Acid (PLA) material3 (seen in Figure 3.2). 3D printed conductive materials have many

uses for creating custom resistive and capacitive sensors (Lazarus & Bedair, 2020). By connecting

the conductive ridges to a Trill Craft capacitive touch sensing board4, the ridges are able to detect

touch interactions from the user. Capacitive sensing for the guiro proved much more reliable than

the Velostat con�guration, but limits guiro interactions to �ngers or another conductive material.

As the Slapbox is primarily designed for �nger and hand interactions, this was an acceptable

limitation.

The back panel's side pads were also iterated upon, using 3D printed conductive layers of PLA

instead of copper tape to make the contact with the Velostat more consistent. Wires could be

attached to the PLA for the side pads and guiro components cleanly on the other side of the panel

by heating up the tips of male jumper wires with a soldering iron while pressing them into the

material.

The Slapbox's construction details have been documented in its public repository5 to support

its replicability, including laser cutting settings, 3D printing �les and sensor fabrication instruc-

tions. These details should also be useful for NIME designers looking to reuse its enclosure for

their own designs.

3.2.2 Gesture extraction

The Slapbox's sides are able to detect continuous touch position and pressure as well as detect

strikes using an impulse detection algorithm. The overall signal space for the instrument is pre-

sented in Table 3.2, and I discuss the details of each gesture detection algorithm below.

3https://www.proto-pasta.com/pages/conductive-pla
4https://shop.bela.io/products/trill-craft
5https://gitlab.com/bboettcher31/velostat-drum/-/blob/master/how_to_build_a_slapbox.md
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Fig. 3.5 Original guiro design showing individual layers of the sensor setup.

Table 3.2 Potential signal space for the Slapbox

Control surface Signal Name Type Range Value Interpretation

pressure pads *_*_pressure
(e.g.,
top_left_pressure)

�oat 0 - 1 0: pressure intensity

*_*_position �oat 0 - 1 pad center - outer edge

*_*_impulse_velocity
(instanced signal,
one instance created per
hit)

�oat 0 - 1 strike velocity

back panel guiro_touch_position �oat 0 - 1 left - right

top panel buttons button_left int 0, 1 0: not pressed, 1: pressed

button_right int 0, 1 0: not pressed, 1: pressed

Position calculation

The values for each ring can be compared to �nd the most likely position of the source of pressure

being applied to a pad, and can also be used for analyzing continuous pressure changes. As pads

are comprised of multiple rings each with their own pressure values, the centroid is �rst determined

to estimate where the pressure source lies relative to the pad's center. A larger number of rings in a

pad results in a �ner resolution of this calculation, yet only three rings as in the side pads produced
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accurate estimations. Ring thickness and distance between rings must also be considered, though

the centroid calculation assumes equidistant rings with equal widths. For the array of ring values

x, the �oating point centroid index is calculated with

centroidIndex =
n∑

i=0

i ∗ x[i]/m (3.1)

where n represents the number of strips and m the sum of values.

Pressure estimation

A pad's centroid index (Equation 3.1) represents the �oating point representation of the center of

mass of the ring pressure array, indicating the relative position to the pad's center while pressure

is applied. Once the index is calculated, a pad's pressure value is found by linearly interpolating

between the ring array values around the centroid index. The centroid was found to be mostly

noise until the pressure applied to the pad exceeded roughly 1

10
of its maximum value, therefore a

simple thresholding function was applied to determine its validity.

Impulse detection

Detecting pad strikes, seen as impulses in pressure values, is done by calculating the rate of

change of pressure over time. If the pad's pressure and its rate of change exceed a threshold, an

impulse is detected using a state machine. The impulse threshold determines the sensitivity of

the instrument, and it is important to �nd a value that detects light impulses without resulting

in false triggers. This pressure value at the time of an impulse being detected corresponds to the

impulse's velocity.

The guiro component is able to use this algorithm by detecting swipes across its ridges as

sequential impulses. The swipes generate considerably less force than taps on the pads, thus the

threshold to trigger impulses was lowered for its sensor con�guration.
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3.2.3 Sound synthesis

Using the Slapbox's sensor input from each surface, a simple mapping was designed to trigger

percussion sounds using audio sampling. Using the gesture extraction algorithms above, the

position relative to a pad's center and velocity value can be extracted from each tap on any of the

four full sensing pads and mapped to synthesis parameters.

When tapped, the pads trigger an audio sample of either a kick, snare, hi-hat, or clap. Two

similar samples of each pad's respective sound type are played at the same time, with the tap

position relative to the pad's center determining a crossfade value between the two samples. The

smaller back pads don't detect this parameter, therefore only one sample is played when triggered.

The velocity of the tap controls the overall gain of the sample(s), imitating the acoustic property

of strike force directly relating to volume. This con�guration provides dynamic percussion timbres

and imitates the sonic changes when striking an acoustic drum head in di�erent positions.

The guiro component triggers a pitched audio sample when any of its 11 ridges are touched.

The playback speed for each ridge's triggers range from the sample's original speed to twice as

fast, distributing pitches linearly across an octave.

Two mappings for the buttons on the top panel were explored over the course of the instru-

ment's creation. The �rst applies a delay e�ect to the overall audio. When a modulating button

is pressed on the top panel, the corresponding side panel near the button acts as a delay e�ect

modulator instead of a drum pad. The position where pressure is applied to the side panel mod-

ulates the delay rate, changing to 200 ms when pressing in the center and defaulting to 400 ms

when no pressure is applied. The delay e�ect is set to 50% feedback and is applied to all output

audio as long as the button is held down.

The second mapping has the buttons control the playback speed of the Slapbox's audio. The

left button slows the playback speed of audio samples to half of the original, and the right button

doubles the speed. This speed change is perceived as a change in pitch for the Slapbox's percussive

sounds, expanding the pitch range to 3 octaves for each sound. In place of the delay functionality

in the �rst mapping, this mapping retriggers audio samples at a �xed rate while pressure is applied
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to a pad after a strike.

Synthesis was implemented in the C++ programming language, creating a simple granular

synthesis engine to achieve polyphonic sampling. Granular synthesis generates small bursts of

overlapping audio at fast rates (grains), allowing us to use this engine for polyphonic sampling

by generating one grain per audio clip. In the case of the full pads with position estimation, this

results in two grains per hit, each with scaled amplitudes according to the position crossfade value.

The latency between a tap and its audio output was able to be reduced noticeably by reducing

the audio block size to 32 samples per block.

Graphical user interface

Aside from the visual feedback provided by the LEDs, a graphical user interface (GUI) was created

to visualize pad strike position and intensity in real time using Bela's GUI framework. Though

initially implemented as a debugging tool for visualizing gestural signals from sensors (see Section

3.2.2), it can also be used during a performance to further con�rm the registration of interactions

with the device. The interface presents a �attened version of the box's components that re�ects

their centroids, pressure and impulse status. As seen in Figure 3.6, the line thickness of each panel's

outline represents pressure intensity, and the centroid is inscribed in each pad when pressure is

applied. Sensor normalization can be triggered with this interface to resolve sensor drift that may

occur over time, though it is also performed automatically when the instrument is turned on to

avoid the need to use the GUI for every performance.

3.3 Evaluations

Informal user evaluations were completed with two professional percussionists throughout the

project to gauge the Slapbox's ful�llment of its design goals and identify opportunities for im-

provement.

The two percussionists were told the Slapbox was a digital musical instrument for percussion

performance and given unlimited time to play the instrument, typically improvising for about 30



3 DMI case study: the Slapbox 28

Fig. 3.6 Slapbox GUI showing a �attened version of the instrument's interaction
surfaces.

minutes each. They were asked to freely explore the instrument while providing feedback about

its responsiveness and playability from their own musical perspective. The instrument was used

both on a table and on the user's lap to explore di�erent playing techniques.

3.3.1 Performer backgrounds

Both participants are active performers currently pursuing a doctoral degree in percussion, one of

whom had already incorporated digital percussion instruments and e�ects into their performances

in the past. While both percussionists evaluated the instrument before the back panel was iterated

upon, only the latter percussionist was able to return for subsequent sessions.

3.3.2 Instrument impressions

Original Slapbox design

Both percussionists engaged with the Slapbox after only a few minutes of experimentation, achiev-

ing complex interactions in the form of fast-tapping passages involving complex rhythms using

several surfaces on the device.

Both performers noted that the LEDs on the tap panel were helpful indicators to con�rm strikes

on the box, and the GUI was able to help the participants better understand the functions of the
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drum pads. The cork surface was liked by both participants, though one of them had concerns

about its durability due to its thickness. Both participants also regarded the instrument's response

time as immediate, which was one of the main goals of the design.

The delay modulation behavior using the buttons was well received, and one participant was

able to create complex rhythms by weaving the delayed audio together from hits. One percussionist

suggested toggling the button e�ects instead of requiring them to be held down, as it took away

much of the mobility in one hand when holding a button.

Both performers noticed a high number of false positive detections resulting from the back

panel's guiro and side pad components. The guiro's impulse threshold was set low to detect light

brushes, yet produced many false triggers when adjacent sides were struck, leaking signals to the

guiro's sensors.

Iterated Slapbox design

After the �rst improvisation sessions, the Slapbox was iterated upon as discussed in Sections 3.2.1

and 3.2.3, creating an improved back panel and modifying the button mappings. Rubber pads

were also added to the instrument's bottom panel by request of one of the performers to prevent

the Slapbox from slipping when struck on a table. Two additional improvisation sessions were

conducted with the second percussionist to evaluate how the changes a�ected how the instrument

is perceived and used.

Interestingly, the playing technique of the second percussionist changed when the retrigger

behavior was added to the instrument. Instead of using fast strikes as they had in the �rst version,

the performer preferred to hold one or more surfaces to retrigger samples while playing with the

octave-modulating buttons to achieve di�erent variations of the sounds. Slightly changing the

instrument's mappings resulted in the user re-interpreting, or co-adapting (Mackay, 2000), their

playing techniques.

The false positive impulse detections that were evident during the �rst improvisation sessions

were substantially reduced with the new back panel implementation. The percussionist noted, �I
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like how it responds. Last time there was a bit more false triggering. In this [version], I feel a

lot more in control of the instrument�. They also enjoyed the retriggering behavior and playing

the pitched guiro ridges �like a marimba�, to complement the atonal percussion sounds from the

other surfaces. An improvisation performance video6 was also created by the percussionist after

taking the Slapbox home for several weeks to practice with it, praising its ability to create complex

rhythms with ease.

3.4 Summary

This chapter presents the Slapbox, the redesign of a percussion DMI built with the goal of being a

responsive, reliable and replicable instrument. The original instrument is �rst introduced, propos-

ing challenges to its maturity to be addressed in the redesign. Several rounds of design iterations

are conducted to work towards these goals, regularly evaluating the instrument with percussionists

to gauge the instrument's performance and to receive feedback for further iterations.

6https://www.youtube.com/watch?v=u8_jG9uUoYQ



31

Chapter 4

Mapping tools case study: libmapper

This chapter discusses recent developments to libmapper, a distributed signal mapping framework,

with the goal of improving its usability by artists. Development principles are implemented to

improve the framework's distribution and lower its barriers for entry and operation, leading to a

more maintainable and stable set of tools. Evaluations to determine the impact of the changes on

the framework's maturity are conducted in the form of artistic projects with two artists of varying

technical skill levels.

4.1 Introducing libmapper

The introduction of libmapper and its challenges for maturity as well as the discussion of the

installation project (Section 4.3.2) have been adapted from Boettcher et al. (2023).

4.1.1 Framework description

As discussed in Section 1.3, libmapper is a distributed signal mapping framework that enables com-

plex mappings between signals over a network. Devices such as control surfaces and synthesizers

implement libmapper's library using one of its language bindings1 and create their signals on the

1http://libmapper.org/ecosystem/language_bindings.html
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network. By using any of libmapper's application bridges2, artists can connect libmapper signals

to parameters in their existing artistic programs. Mappings between signals can �nally be made

and managed using any of the framework's several session managers and user interfaces3. Various

utility programs have also been developed to handle the recording, looping, and visualization of

mappings (Frisson et al., 2021).

4.1.2 Challenges for maturity

The libmapper project has shown a clear potential for use in mapping research in recent years,

motivating many researchers to make contributions to the library, its mapping interfaces, language

bindings and application bridges. The libmapper library has been embedded into a number of

gestural devices as well including TorqueTuner (Kirkegaard et al., 2020), the T-Stick (Kirkegaard

et al., 2020) and Probatio (Calegario, Wanderley, et al., 2020). While these contributions bring

valuable new features and research attention to the framework, its user base is largely con�ned to

developers with highly technical experience.

Aside from the di�culty of maintaining such a vast array of tools with research funds, I

speculate that the technical requirements to install and operate the tools themselves are primarily

to blame for this characteristic. Firstly, distributed mapping tools are middleware, requiring

input and output devices to be set up before they can be used. The fact that the libmapper

project aims at supporting users of many programming languages, environments, applications and

hardware platforms creates challenges for software distribution, especially since many are �moving

targets��language bindings for Max that were stable and performant in 2012 will not run under

newer versions of Max4, and web applications (such as the webmapper session manager seen in

Figure 4.1) are sometimes broken by new web browser releases.

Additionally, the popularization of new artistic software will require the creation of correspond-

ing libmapper bridges. Some discussion has taken place about resolving many of these issues by

2http://libmapperorg/ecosystem/protocol_bridges.html
3http://libmapperorg/ecosystem/user_interfaces.html
4https://cycling74.com/products/max
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Fig. 4.1 Webmapper's List View during the audiovisual installation discussed in
Section 4.3.2, showing gestural signals from T-Sticks on the left connected to modu-
lation signals in TouchDesigner and SuperCollider on the right.

representing libmapper maps with WebAssembly, allowing users to write map expressions in what-

ever language they are most familiar with5, though this would require a large reorganization of

the framework.

Finally, the prioritization of new features over stability may also be partly responsible for these

consequences. Alas, it can prove di�cult to justify important, yet mundane, engineering work in

a research context. While the framework boasts many bene�ts when compared to competing

mapping approaches, its usability barriers prevent the user feedback needed to fully determine its

feasibility amongst its peers. In order to open the doors for artistic uses of the framework and

to answer research questions regarding mapping design, the focus of development is shifted to

overcoming obstacles that prevent its common use among artists.

4.2 Addressing barriers for entry and operation

I have chosen to address three main issues that plague the usability of libmapper for the end

user. The �rst concerns improving the ease of installation and setup for libmapper and its bridges.

Next, I present a newly created Python module that handles many of the challenges associated

5https://groups.google.com/g/dot_mapper/c/foPkuO7NpbA/m/xX3qPj9mBQAJ
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with designing a portable and stable distributed mapping session with libmapper. Finally, several

improvements are introduced to webmapper with the intent of increasing the readability of signals

and their metadata for the user. These three developments, detailed in the coming sections, aim

to improve the accessibility and usability of libmapper, removing technical barriers to support the

pursuit of artistic endeavors.

4.2.1 Distribution and documentation

The many tools that make up the libmapper framework make its distribution an especially di�cult

task. I have chosen to focus on supporting continuous integration (CI) of the libmapper library and

webmapper with automated building and distribution, as well as improving the documentation

and organization of libmapper's application bridges whenever possible.

CI and package managers

CI is an important engineering principle that encourages automated building and releasing of

software. Often left out of research projects, CI principles reduce debugging time using automated

tests and support stability by encouraging frequent releases (Hilton et al., 2016). Using CI for

libmapper and webmapper, users can be presented with a precompiled package that can be installed

through their chosen package manager and platform. Github Actions6 has been utilized for these

purposes, allowing automation of the building and testing of libmapper and its language bindings

for all platforms when updates are pushed.

Libmapper itself functions as a dynamically-linked (or shared) library in which programs ac-

cess its functions at runtime. While Linux and MacOS contain dedicated directories in which

these types of libraries are installed, Windows leaves it up to the user, making general installation

di�cult. For this reason, I did not prioritize the distribution of the libmapper binaries as devel-

opers will often want to build shared libraries directly from source. However, I decided to align

with Ubuntu's library system and created a personal package archive for libmapper7 that allows

6https://github.com/features/actions
7https://launchpad.net/~libmapper/+archive/ubuntu/libmapper/
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installation using Ubuntu's package manager apt.

Libmapper's Python bindings are also now built with CI, and are able to be distributed using

pip, Python's package manager. By simply running pip install libmapper8, the bindings for

the user's platform are installed for their Python environment and can be easily updated at any

time. As webmapper utilizes the Python bindings in its design, users no longer need to build

any software from source to operate the application. The creation of standalone webmapper

executables for all platforms has been enabled using PyInstaller9, providing a method of using

the application without entering the terminal. A Windows installer has also been created for the

standalone version of webmapper, integrating it directly alongside the user's other applications.

Previously restricted to MacOS, I have enabled the use of libmapper's Max, Pure Data10 and

SuperCollider11 application bridges on Windows as well using CMake12. A secondary signal cre-

ation option for the SuperCollider bridge was also created to provide more �exibility for users.

Now, in addition to using signal generators provided by the plugin, users are now able to route

signals using Busses13, o�ering the possibility to create signals outside of user-de�ned synthesiz-

ers. For the Max bridge, I have packaged the plugins and submitted them to the Max package

manager14. If the package is accepted it will become available for one-click installation for all

platforms within Max, avoiding all manual compilation or installation. The packages are created

automatically with Github Actions, making releases easier for developers as well.

These improvements to libmapper's distribution enable artists to grab the most recent releases

easily without having to manually build the tools from source in order to use them. Additionally,

our release process is much easier and quicker using the virtual build environments provided by

Github Actions.

8https://pypi.org/project/libmapper/
9https://pyinstaller.org/en/stable/

10https://puredata.info/
11https://supercollider.github.io/
12https://cmake.org/
13https://doc.sccode.org/Classes/Bus.html
14https://docs.cycling74.com/max8/vignettes/package_manager
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Documentation and continuity

Another important step taken after these changes were made is to update the libmapper website15

with the most recent links and documentation for installation and use. A number of recent

related projects and publications were also added to the website to showcase the potential of

the framework. Usage instructions and build scripts have been updated for many of libmapper's

bridges to make them easy to install and use for any platform.

Though the changes presented here may seem obvious, it is important to realize why it has

taken so long for them to be implemented to avoid this barrier in related research projects. For

one, the rise of CI tools such as Github Actions has only recently opened up the opportunity to

automate deployment using virtual environments. Aside from availability, this type of work is not

easily justi�ed as research, pushing funding towards feature additions rather than the maintenance

and development required to make a project available to a wider audience. I argue that this CI

work should be a compulsory part of user-facing research projects in order to increase the feasibility

of the projects for artists.

4.2.2 Mapping session management

Webmapper (Wang et al., 2019), libmapper's most-used graphical interface for mapping design,

contains basic features for loading and saving mapping sessions using Javascript Object Notation

(JSON) structures. In order to address more complex session management needs and improve the

portability of sessions, I have created a Python module for mapping session management that can

be used from the command line or imported as a library into other Python scripts.

I call the module mappersession, and have made it installable through pip similarly to libmap-

per16 to align with the CI principles proposed in this paper. Using a Python module permits

session management to operate from any Python program or a command line, and work is in

progress to extend the module for use in C/C++ programs. Running the session manager from

15http://libmapper.org
16https://pypi.org/project/mappersession/
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the command line provides a headless mode of session management suited well for automating

the setup of artistic works. I have also written detailed installation and usage instructions for the

module in its Github repository17 and public package to align with documentation standards for

Python packages.

mappersession features

The mappersession module maintains backward compatibility with webmapper's JSON structure,

allowing the loading of previously saved mappings with older versions of webmapper. To improve

the portability of session �les, a versioned JSON schema has been designed for storing information

about maps, user interface properties and signal values a user chooses to be initialized once the

session is loaded.

Aside from simple loading and saving, mappersession also supports persistent sessions to han-

dle devices disconnecting and reconnecting. In a persistent session, the manager monitors the

libmapper signal graph and waits until all signals in each managed map are present on the net-

work before loading the map, and reloads the map as necessary as its signals reappear. In a

distributed framework like libmapper, this is an important feature for performances with many

devices to keep mappings active throughout the whole session.

Additionally, users are able to load any number of sessions at once, changing the active session

with a libmapper signal representing the session index. By mapping another signal to the index

signal, users can explore the e�ects of cycling through groups of mappings in real time.

4.2.3 Improving signal readability

Aside from the distribution changes from Section 4.2.1, I also focused on the readability and

usability of the webmapper graphical session manager. Re�ning these rough edges should make

the program (and the framework) more approachable for artists designing mappings. Several

existing bugs for Windows users have been �xed, including more readable network interfaces and

17https://github.com/libmapper/mappersession
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improvements to network interface selection and clean exiting of the program.

When mapping between signals that do not have their own graphical visualizers, it can some-

times be di�cult for users to understand the behavior of the source signals or to tune map pro-

cessing expressions. For this reason, a simple signal value plotter has been added to webmapper

(Figure 4.2) that can be opened for any signal on the network. A more sophisticated standalone

signal plotter that supports multiple signals, vectors and signal instances was also added to the

libmapper utilities18. This feature has proven useful in the design of devices as well, using visual-

ized sensor values to adjust signal ranges in the �rmware of the device.

Fig. 4.2 Left: the real time signal value plotter in webmapper, with the x-axis as
time and the y-axis as the signal's range; right: a standalone signal plotter written in
Python with the same axes as the webmapper plotter.

I have also simpli�ed the signal displays in List and Grid View by moving less-relevant metadata

�elds to a tooltip rather than showing them in every box. Before this change, each signal displayed

its length, range, data type and unit all within its box. While many of these �elds are useful when

�ne-tuning mappings, displaying them all in each signal box can hinder the readability of larger

lists of signals. Instead, a metadata tooltip was implemented that appears when hovering over a

signal (Figure 4.3), providing scalability for new �elds and reducing visual clutter.

18http://libmapper.org/ecosystem/utilities
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Fig. 4.3 An example of signal metadata displayed as a tooltip to increase signal
readability. The signal's name and length is displayed at all times, with its other
properties appearing in a tooltip when the mouse hovers over the component.

4.2.4 Mapper4Live: a libmapper to Ableton Live bridge

Ableton Live19 is a popular commercial music production and performance program known as a

digital audio workstation (DAW). Uniquely, it presents a number of developer-friendly tools for

creating devices that can interact with the production session, enabling the creation of a libmapper

bridge calledMapper4Live. Details regarding Mapper4Live's design and implementation have been

adapted from Boettcher, Malloch, et al. (2022), where the plugin was �rst presented.

Ableton's Live Object Model

Ableton Live uniquely presents its internal structure to developers in the form of its Live Object

Model (LOM). The LOM is hierarchically structured to organize tracks, software devices and audio

parameters in the production session and can be accessed using Max objects. State variables such

as the currently selected track or audio parameter can be accessed via the LOM to track the user's

interactions with the program. Parameters from synthesis and e�ect plugins are contained in this

hierarchy as well, giving Max for Live developers the ability to control other devices in the session.

These features provide a number of useful tools for mapping frameworks. In the case of

libmapper, this results in the ability to view and control the parameter spaces of all audio devices

19https://www.ableton.com/en/live/
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in the production session, giving mapping designers a multitude of new synthesis and audio e�ect

signals that can be connected to gestural controllers.

Bringing communities together

A partnership between Ableton and Cycling 74, the company that maintains and develops Max,

embeds a version of Max into Ableton Live called Max for Live20 that lets developers create their

own software devices in Ableton Live using the Max framework. Functionally the same as software

plugins hosted by Ableton Live, Max for Live devices can produce and process audio as well as

MIDI. These hackable devices also have access to the LOM, giving developers access to other

plugins and parameters in the production session. This intended extensibility of the Ableton Live

platform provides a natural entry point to connect with libmapper, and thus Mapper4Live was

created as a Max for Live device.

Functionality in other DAWs

Mapper4Live is built as a Max for Live device, meaning that it is only compatible with Ableton

Live and would need a di�erent implementation to work in other DAWs. Max for Live is unique

in that it exposes the session parameters, and most popular DAWs do not o�er similar tools to

developers. However, a similar approach can be done with other DAWs as well if the proper

interfaces are exposed. For example, researchers at the University of Bordeaux are exploring

integrating libmapper into the structure of Ossia Score (Celerier et al., 2015), an open-source

DAW. This addition to Score would give similar functionality to Mapper4Live, letting users expose

libmapper signals from the production session.

Prerequisite work

Ableton Live, as well as Max for Live runs on Windows and MacOS, while libmapper was originally

built and extensively tested under Unix environments (MacOS and Linux), with Max external

20https://www.ableton.com/en/live/max-for-live/
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objects available for MacOS. It would be ideal for the Mapper4Live interface to operate on both

platforms that Ableton and Max support, and in this section I present updates to the existing

components necessary: the main libmapper library as well as the Max/MSP external objects21.

While in theory it had been possible to build libmapper on Windows using the MinGW

toolchain22, any applications compiled this way would not work with Windows-based applica-

tions developed using the Visual Studio compiler and run-time. This meant for example that the

Max external objects, built with Windows via the Max software development kit (SDK) in Visual

Studio, would not be supported. As such, changes were made to libmapper and subsequently the

Max and Pure Data externals. The most notable changes include the removal of variable length

array de�nitions23, which are not supported by the Visual Studio C compiler. In addition to en-

abling the development of Mapper4Live, these updates to libmapper provided better compatibility

of the library including support for native Windows applications, as well as Max external objects

in Windows. With these changes, it was possible to embed libmapper, via the Max external object,

into a Max for Live device, and provide the fundamental interfaces to implement the Mapper4Live

plugin.

Plugin design

The publicly available LFO (low frequency oscillator) Max for Live device24 was used as a reference

for retrieving information from the LOM because of its parameter mapping functionality. Max

for Live devices are inherently editable, allowing the parameter mapping subpatches in the LFO

device to be copied and tweaked for the new plugin. The live.path Max object can be used to

detect changes in LOM variables, and is used by Mapper4Live to listen to changes in the currently

selected parameter when adding new signals. Once a new parameter is selected to be added to

Mapper4Live, the live.object Max object retrieves information about the parameter including its

name, parent device, value range and ID within the session. The parameter's name, parent and

21https://github.com/malloch/mapper-max-pd
22https://www.mingw-w64.org/
23https://github.com/libmapper/mapper-max-pd/pull/2
24https://www.ableton.com/en/packs/max-live-essentials
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ID are formed into a unique hierarchical address for the libmapper network, while the range allows

libmapper to automatically normalize incoming values for the signal. Finally, the device creates a

mappable libmapper signal for the parameter on the network.

Fig. 4.4 The Mapper4Live plugin interface. Parameters from the Claverb instru-
ment in Ableton Live are exposed on the libmapper network where gestural controllers
can modulate their values in real time.

The plugin operates by users �rst clicking an open Map button, and then clicking on an Ableton

Live parameter in the session that they wish to connect with libmapper. Once created, the signals

will appear on the libmapper network under a mapper.x device, x being the instance number of

the object. This allows users to create multiple instances to separate signals between tracks if

intended. Clicking a Map button's corresponding �X� button to its right will remove the signal

from the network, deleting any connections containing the signal as well.

Although Mapper4Live could exist as an audio e�ect device, it was created as a MIDI e�ect

device in order to always place it at the beginning of the chain for visibility (seen in Figure 4.4).

The device can be placed on any track without any functional changes and can create signals from

any other track's parameters. Once signals are created using Mapper4Live, webmapper can be

opened via the �edit mappings� button to manage connections. Users can also connect mappings

on the network with libmapper's command line functions, but webmapper provides much more

user-friendly controls for the connections.
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4.2.5 Mapper4TD: a libmapper to TouchDesigner bridge

A new libmapper bridge has also been recently created for the popular multimedia art program

TouchDesigner25, opening up new opportunities for real-time audiovisual mapping for an estab-

lished community. Seen in Figure 4.5, Mapper4TD26 supports both source and destination signal

types, letting users send TouchDesigner's many source signals out to other devices as well as

modulate TouchDesigner parameters with external devices.

Fig. 4.5 Internals of the Mapper4TD container, showing its inline setup and usage
instructions at the top, components for source signals on the left (inSources), destina-
tion signals on the right (dstSignalNames) and a libmapper device written in Python
that manages signal networking in the bottom left (MapperDevice).

25https://derivative.ca/
26https://github.com/libmapper/Mapper4TD
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Plugin implementation

Plugins in TouchDesigner are called operators, and are able to connect signals to each other

with drag-and-drop wires. TouchDesigner is bundled with its own Python environment, providing

abstract structures for developers to use when creating a plugin. I was able to use this environment

along with libmapper's Python bindings to create a libmapper device and control its signals from

within a TouchDesigner operator. One of TouchDesigner's LFO operators was then connected

to trigger signal updates at a �xed rate and push them to the network. Finally, Mapper4TD

was packaged into a portable Container27 along with detailed setup and usage instructions. As

the plugin was designed entirely with Python and TouchDesigner's internal operators, it is cross-

platform compatible and requires no compilation.

4.3 Artistic evaluations

In order to determine the impact of the applied development principles on libmapper's maturity, I

have organized two evaluations. The �rst consists of experimentation sessions with Mapper4Live

and Probatio (discussed in Section 2.2.1), where the capabilities of Mapper4Live are tested to

discover the work�ow and bene�ts of using a complex mapping framework in a music production

program. Next, libmapper's barriers to entry and operation are evaluated with the design of an

interactive audiovisual installation by professional sound and visual artists.

4.3.1 Mapper4Live experimentation

Mapper4Live opens many opportunities for exploring complex mappings with professional sound

synthesis and e�ects software. Probatio was chosen as an input device for the explorations due to its

wide range of interaction types (e.g., joysticks, knobs, pistons) and compatibility with libmapper.

In the �rst experimentation session (seen in Figure 4.6), an artist improvised using a piano MIDI

controller while its synthesis and e�ect parameters were modulated by Probatio modules. In the

27https://derivative.ca/UserGuide/Container_COMP
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second session, MIDI was automatically generated using a machine learning model28, leaving only

one performer to modulate the incoming notes.

Fig. 4.6 A jam session using Probatio signals mapped to Ableton Live parameters
using Mapper4Live.

Expressivity a�ordances

Various mappings were tested between the Probatio modules and Ableton parameters in each

session to determine what (if any) bene�ts arose in a music production environment when using a

complex mapping framework and novel input devices. Libmapper's expression syntax29 was used to

�ne-tune relationships between signals and create new representations. For example, the joystick's

X and Y position signals were used to calculate the overall movement speed for some mappings,

forcing the performer to supply continuous energy to the system for modulation to occur. Typical

mappings in music production programs are limited to simple one-to-one mappings, therefore this

a�ordance of intimate control over mappings with Mapper4Live provides music producers with an

improved set of tools for expressing their intents. It is important to mention that modulations from

28https://magenta.tensor�ow.org/music-transformer
29https://github.com/libmapper/libmapper/blob/main/doc/expression_syntax.md
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Mapper4Live can also be recorded into the audio timeline as automation data, allowing artists to

record portions of gestural data in real time onto the track and even edit each data point at a

later time, integrating directly into Ableton's modulation work�ow.

4.3.2 An interactive audiovisual installation

The developments described in this chapter are intended to increase the usefulness and desirability

of libmapper as a mapping option for artists with little to no development experience. To evaluate

this claim, I have organized the creation of an interactive audiovisual installation project by

commissioning two artist collaborators with varying levels of technical experience. The artists

were able to make their own design choices to create two distinct interactive sessions over the

course of one month, but were constrained to using libmapper for their signals and mappings.

This project provided the opportunity to evaluate many of the changes to libmapper introduced

in this chapter including ease of setup and operation, session management and the mapping design

process for artists. After describing the installation design process and demonstration, feedback

from the artists was assessed to determine the impact of the changes on the usability of the

mapping framework and the e�ectiveness of the development principles imposed.

Artist pro�les

The sound artist is a professional software engineer experienced with SuperCollider for live coding

performances and freelance works, using the MacOS platform for their development. The visual

artist, with rudimentary Python scripting experience, is pro�cient with TouchDesigner on their

Windows machine and has created interactive patches in the past using the application's integrated

LeapMotion and MIDI modules. While neither artist has used a distributed mapping framework

like libmapper before, both have experience with designing basic mappings with MIDI and OSC.

The diversity in the artists' development experience and platform preference presents a unique

opportunity to examine the ease of setup and operation of libmapper throughout the design of the

installation.
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Devices and programs

The installation was designed using a combination of tools developed at the Société des Arts

Technologiques (SAT) and the Input Devices and Music Interaction Laboratory (IDMIL). Three

T-Stick DMIs (Malloch & Wanderley, 2007) were used as input devices, each providing 18 gestural

signals made available on the libmapper network and through OSC. The sound artist used Super-

Collider for synthesis, adopting the SAT's open-source SATIE plugin (Bouillot et al., 2017) for

spatialization. The visual artist created projection-mapped visuals with TouchDesigner, testing

the program's new libmapper bridge. As each of these systems is compatible with libmapper, the

T-Sticks are able to control the audio and visual signals in each program in real time.

The design process

The artists began by choosing a theme to connect the two sessions, deciding upon representing

human interactions with nature and technology. The artists then set out to design audio and

visual patches for nature and technology, each with their own set of mappable signals. In order

to emphasize experimentation in the mapping design process, the artists separately chose which

signals from their programs to expose on the network and left mapping design for when the patches

were nearly complete.

Patches for TouchDesigner and SuperCollider were designed by the artists using generic output

models for audio and video, utilizing SATIE's abstracted models for sound spatialization. The use

of generic output models and distributed mappings makes the project portable to many types of

systems with di�erent projection mapping and spatialization requirements.

Mapping design for the project occurred during several experimentation sessions throughout

the process with myself and the artists, searching for mappings that were meaningful to the

piece. The ability of both artists to understand the source signals from the T-Sticks and the

destinations in the audiovisual patches was an important requirement for mapping ideation, leading

to the creation of tables with detailed signal descriptions and modulation examples. By virtue of



4 Mapping tools case study: libmapper 48

libmapper's distributed approach, mapping ideas could be created and tested easily without the

need to change any of the devices or patches.

The artists aimed for the interactions to mirror the theme of each session by using continuous,

�owing media and movements for nature and discrete, abrupt ones for technology. The �nal

nature-themed session contained 19 maps and the technology-themed session contained 27 maps,

with control divided between three T-Sticks. The T-Stick's Shake, squeeze and orientation signals

were used with one T-Stick each, keeping the devices consistent in their interaction types (Figure

4.7). All patches and mappings for each session have been made open source as well to encourage

further contributions or reuse on other systems30.

Fig. 4.7 Overview of the systems and interactions used in the interactive installation
project.

Satosphére demo session

As the �nal stage of the artistic explorations proposed in this project, the artists were invited

to set a demonstration of their created immersive space in the Satosphére. The Satosphére,

created in 2011 and located in Montréal, is a full dome with a diameter of 18 meters, and is a

permanent immersive modular theatre dedicated to artistic creation and events31. This space is

30https://github.com/IDMIL/Human-Nature-Installation
31https://sat.qc.ca/en/satosphere
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capable of 360-degree video projection and a complex speaker setting using 157 speakers grouped

to form 31 virtual speakers organized around the dome. These characteristics make the Satosphére

an excellent candidate for testing the mapping capabilities of libmapper, webmapper, the bridges

developed during this project, and SATIE's ability to adapt to di�erent venues by invoking various

spatializer presets.

Moreover, the Satosphére's equipment is con�gured to provide tools for artists to connect their

devices. The connections using audio and video on the Satosphére usually employ Network Device

Interface (NDI) as the standard video transmission protocol and MADI-compatible devices32 for

carrying digital audio. This setup allowed the artists to work individually in generating artistic

content without concern about how the devices will be connected at the venue.

The same work�ow was employed for the data streaming. In that sense, using a decentralized

signal mapping framework using libmapper allowed artists to individually work with their content

and de�ne which control parameters would be exposed to be subsequently mapped during the

demo session. These control parameters were available as libmapper signals, created using the

bindings and bridges described in Section 4.2.1.

Simultaneously, I focused on creating mapping sessions based on the libmapper signals (control

parameters) provided by the artists. This process allowed modular prototyping while streamlining

the setup for the event. Each artist was able to simply connect with the available network to

automatically expose their libmapper signals.

Unfortunately, multiple technical issues were encountered during setup. These issues were not

caused by the use of libmapper, but resulted from networking and connectivity limitations of some

devices. Describing some of the issues encountered might be useful as a description of commonly

found obstacles during interactive demos, performances and installations. The strategies used to

overcome these problems may be relevant and applicable to future projects.

First, a large number of missing User Datagram Protocol (UDP) packets were noticed when

more than one T-Stick was connected to the network. This caused the T-Sticks to intermittently

32https://www.rme-audio.de/rme-madi-technology.html
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disconnect and reconnect from the network, blocking the mapping session from being fully ac-

tive. Upon troubleshooting, the issue was attributed to network problems regarding the particular

model of microcontroller in the T-Stick. Working with distributed mapping allowed me to pro-

gram a quick on-site �x in the form of an OSC-to-libmapper forwarding program that discovers

OSC signals, creates corresponding libmapper signals on the network and forwards the signal

values through to libmapper. Modifying the point in the network where the T-Stick libmapper

signals were created, I could overcome the issue, albeit by adding a bit of latency to the pipeline.

Nevertheless, the sessions were �nally able to connect all of the mappings on site the day it was

developed.

Another hurdle appeared as I realized that the Satosphére requires NDI over Ethernet for video,

while libmapper requires Wi-Fi for T-Stick connections. After problems arose when attempting

to use both network interfaces at once, a Magewell HDMI-to-NDI converter device33 was instead

utilized, avoiding the need to use the Ethernet interface on the TouchDesigner machine.

Overall, the setup time and troubleshooting related to mappings were straightforward in com-

parison with similar events organized at the Satosphére, according to the venue technicians. More

importantly, assembling the individual artists' work into a cohesive installation posed little chal-

lenge as each libmapper device could be discovered over the network, and the mapping session

manager could automatically restore all previously saved connections.

Feedback from artists

After the conclusion of the installation project, I interviewed the artists to gather information

about their experience using libmapper. I explored the e�ect of technical experience on the ease

of setup and use of the framework as well as the resulting feasibility and desire to use it again in

the future.

The visual and audio artists claimed that it was simple and quick for them to install libmapper,

webmapper and the bridge for their respective programs and platforms. This alone speaks to an

33https://www.magewell.com/products/pro-convert-hdmi-tx
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increase in usability for artists across platforms and technical levels as a result of the distribution

and CI principles implemented. The audio artist had some initial trouble integrating MapperUGen

into their preferred SuperCollider work�ow as their method of sequencing continuously created

and destroyed the libmapper signals, but was able to �nd an alternative using the new signal

Bus feature discussed in Section 4.2.1. The visual artist was able to use their basic Python skills

to install libmapper and set up Mapper4TD in TouchDesigner without issue by following the

instructions in the Mapper4TD container. Each artist went about choosing signals to expose on

the network by experimentation, often testing new audiovisual signals with various T-Stick signals

to get a sense of the e�ect on the patch and to �nd desirable connections for the session.

When asked whether they would be willing to use libmapper in the future, both agreed that

it would be a great �t for su�ciently complex artistic projects like this one and felt comfortable

using the framework. Once they had the concept of distributed signals and mappings ��gured out�,

they enjoyed the visual style of designing mappings with webmapper and recognized the bene�ts

of libmapper compared to MIDI and OSC. The positive feedback regarding libmapper's ease of

setup and use for di�erent platforms, programs and technical levels points towards an increase in

usability and accessibility for the framework due to the developments introduced in this chapter.

In addition to the informal interviews, I utilized the System Usability Scale (SUS) survey

introduced in Section 2.2.1. After receiving responses from each artist, the individual SUS scores

were 72.5 and 40, producing a mean value of 56.25. One observation from the results is that the

artist working as a programmer scored the framework much higher than the non-developer artist.

This indicates that the framework requires additional work to become easily usable by artists of

all technical levels. As this is the �rst instance of a SUS evaluation for libmapper, its score may

also serve as a baseline for future work toward the same goals.

4.4 Summary

This chapter introduces libmapper, a distributed signal mapping framework, and reviews several

challenges to its maturity including documentation, compatibility, automated distribution and
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mapping session management. Developments to address these barriers are discussed, evaluating

their impact by organizing the design of an interactive audiovisual installation piece by artists.

Positive feedback regarding the framework's ease of setup and operation suggests the e�ectiveness

of the development principles imposed.
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Chapter 5

Conclusions and future work

I have presented two case studies aimed at developing the maturity of DMIs and mapping tools

using design and development principles introduced in literature. In the �rst study, the redesign

of a standalone percussive DMI is discussed, using continual iteration and evaluation loops to

improve the instrument's reliability, stability and usability by artists. The second study reviewed

recent developments to libmapper to support its availability, compatibility and usability.

This chapter summarizes the impact of my contributions to each project's maturity and sug-

gests future work toward the same goal.

5.1 Impact of the applied practices

Several design and development principles supporting NIME maturity have been introduced and

applied to the case studies in this thesis. First, the Tapbox DMI was evaluated to set the stage for

its redesign: the Slapbox. Working from an existing instrument allowed me to reuse much of the

enclosure and electronics from the original design. Focusing on prototyping the new interaction

methods, I made quick design decisions to evaluate the capabilities of sensors as well as synthesis

methods to map to the interactions. Throughout the instrument's design, its build instructions

and software were continually documented to increase its replicability for future designers. Next,

multiple iteration and evaluation loops were performed with professional percussionists to identify
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shortcomings in performance and usability. These practices formed the Slapbox into a replicable,

engaging instrument that artists are able to pick up and play with no help from the original

designer.

The second case study involved developing the maturity of libmapper, a distributed signal

mapping framework. The framework's large collection of tools born from research has created

several barriers to its entry and operation by artists and researchers with limited development

experience. The �rst barrier addressed was the distribution of libmapper and its related tools. CI

practices were used to automate the library's releases for all platforms, eliminating the need for

users to manually compile and install the program.

Similarly, many of libmapper's application bridges were made compatible with all platforms,

making sure to document the new repository and release links on libmapper's website. Two new

cross-platform application bridges were also presented, providing new contexts for the framework's

use and evaluation in established artistic communities. An interactive audiovisual installation

project was organized with two artists to evaluate the impact of many of these developments,

resulting in positive feedback regarding libmapper's usability.

Feedback from the case studies has reinforced the e�ectiveness of the above practices to support

usability, availability, replicability and communities for both DMIs and mapping tools.

5.1.1 Applications to other projects

The aforementioned development and design principles can be applied to other projects as well by

using the design diagram presented in Figure 2.1. By following this �ow of design priorities, the

project can continually improve its performance while supporting stability and replicability. While

most research projects are created with limited timelines, these principles should be prioritized to

encourage long-term use by researchers and artists.

The software development principles discussed in Section 4.2.1 are especially important for

research tools, which often lack the necessary distribution and documentation to make the project

extensible for developers and accessible to users. Good CI practices to support testing and dis-
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tribution are vital for research software that functions as middleware such as libmapper, where

multiple tools must all be accessible and operable by a user at once.

5.2 Future work

5.2.1 Slapbox improvements

Based on suggestions from the evaluations and design goals, there are many opportunities to

continue development on the Slapbox to increase its reliability. The Slapbox's Velostat sensors

perform well to detect both continuous and sudden interactions, yet are unable to provide accurate

velocity estimations for strikes. Although the accuracy of detecting strikes has increased notably

since the original design, sensor fusion with PVDF �lm1 or other transducers might improve

velocity estimations without hindering strike detection.

Loading custom samples into the Slapbox was a popular request during the user evaluations,

and could be accomplished using the GUI in a future iteration. Related to this, additional research

could also explore new mappings between the device's control space and sound synthesis. For

example, percussion physical modeling synthesis could be used to imitate acoustic responses on

a drum head using the position value from pads. The Slapbox's interaction surfaces can also be

used for non-percussive or harmonic mappings to explore its use in other musical contexts.

Another development would be to utilize libmapper to open opportunities for user-de�ned

mappings. This change would require the declaration of the Slapbox's signal space which would

include sensor values and high-level gesture data as well as its synthesis parameters. Table 3.2

illustrates one method of exposing the Slapbox's signal space with libmapper. External synthesis

engines compatible with libmapper could be used if implemented as well, treating the Slapbox as

a control surface. This would provide opportunities for further evaluations of how the Slapbox is

used with new types of mappings and synthesis.

Aside from these features, there is still work to be done to support the instrument's replicability.

1https://piezopvdf.com/piezo-pvdf-�lm/
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The Slapbox's construction process and software organization is well-documented, though only one

copy currently exists. Building additional Slapboxes would enable new designers and artists to

learn about and use the device, and may uncover challenges to its replicability that I was not

aware of.

5.2.2 Libmapper improvements

Though the developments presented in Chapter 4 are a step in the right direction to support users,

there is still more work to be done to improve the distribution and usability of libmapper.

Session management

Mappersession, the mapping session manager presented in Section 4.2.2, will be expanded upon

as well by creating a shared object library similar to libmapper to allow for use in both Python

and C programs. Though this will require another large push for distribution and CI with Github

Actions to support usability, it is important to have a session manager that can be integrated into

applications with any language.

The session manager currently makes some unsafe assumptions about the state of the network,

which may lead to con�icts when multiple sessions are active. Future versions will let users choose

more rigorous methods of map staging instead of persistently reconnecting any disconnected maps,

such as one-time staging to initialize a session as devices appear. Webmapper's integration with

mappersession will also be developed further to utilize mappersession's ability to save and restore

graphical data in sessions. This feature is useful for visualization methods that allow users to

organize the positions of connections in a session, restoring the state when the session is loaded.

Distribution

Next, all of libmapper's bridges should be built using Github Actions for CI and distributed to

each community's package manager or repository in order to increase visibility, get additional

feedback about the framework and grow a user community. Many of the bridges also lack support
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for creating vectored and instanced signals. These features unlock many new opportunities for

mappings, yet have remained largely untested by users due to the lack of support from bridges.

Additional usability trials

The interactive audiovisual installation project discussed in Section 4.3.2 produced interesting

new use cases for libmapper and allowed the testing of many new developments to the framework,

yet fell short of providing conclusive usability results. The small sample size of artists evaluating

the framework was not enough to de�nitively evaluate the impact of the developments on the

framework's usability for artists of all technical levels. Additional evaluations should be conducted

with a larger group of artists to determine the state of usability and discover a path forward to

support its maturity.
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