
The Digital Orchestra Toolbox for Max

Joseph Malloch
GEM Lab

Faculty of Computer Science
Dalhousie University

Halifax, Canada
joseph.malloch@dal.ca

Marlon Schumacher
IMWI

Hochschule für Musik
Karlsruhe

Karlsruhe, Germany
marlon.schumacher@hfm-

karlsruhe.de

Stephen Sinclair
Inria Chile

Santiago, Chile
stephen.sinclair@inria.cl

Marcelo M. Wanderley
IDMIL, CIRMMT
McGill University
Montreal, Canada

marcelo.wanderley@mcgill.ca

ABSTRACT
The Digital Orchestra Toolbox for Max is an open-source
collection of small modular software tools for aiding the de-
velopment of Digital Musical Instruments. Each tool takes
the form of an “abstraction” for the visual programming
environment Max, meaning it can be opened and under-
stood by users within the Max environment, as well as
copied, modified, and appropriated as desired. This pa-
per describes the origins and motivations for creating the
Toolbox, broadly outlines the types of tools included, and
follows the development of the project over the last twelve
years. We also present examples of several digital musical
instruments built using the Toolbox.

Author Keywords
digital musical instruments, mapping, Max, toolbox, cre-
ativity support

CCS Concepts
•Applied computing→ Sound and music computing;
Performing arts;

1. INTRODUCTION
The McGill Digital Orchestra was a large research-creation
project supported by the Appui à la recherche-création pro-
gram of the Fonds de recherche sur la société et la culture
(FQRSC) of the Quebec government [7, 1]. The project
brought together research-creators and researchers in per-
formance, composition and music technology to work col-
laboratively in creating tools for live performance with dig-
ital technology. A large part of this research focused on
developing new musical interfaces. The grant had a du-
ration of three years and culminated with a performance
of new works during the 2008 MusiMars/MusiMarch Fes-
tival in Montreal. In the context of the project, student
research assistants were hired from the three contributing
academic areas: four doctoral students in performance, two

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

from composition, and four graduate students from music
technology.

A large part of the performers’ collaboration focused on
extending and refining the mapping relationships used to
translate performer gesture into sound. To this end, weekly
meeting/mapping sessions were held in which group mem-
bers collaboratively developed instrument voices and play-
ing techniques. It became apparent at an early stage in
the project that contributors were dealing with redundant
tasks for gesture acquisition and conditioning, and that a
set of higher-level building block tools would be useful to aid
composers and musicians in the development of mappings.
Therefore, in a collaborative research effort we started col-
lecting abstractions into a software repository to which in-
dividual developers would contribute with the goal of de-
veloping a toolbox allowing to focus on higher-level tasks.
Both the Digital Orchestra Toolbox and the mapping sys-
tem described in [4] were developed to make these meetings
more productive and enjoyable.

2. RELATED WORK
The hid library for Pd is a collection of approximately thirty
objects for the Pure Data graphical programming environ-
ment, created to facilitate the use of standard Human Inter-
face Devices (HIDs) for controlling software[8]. The library
provides an object hid for interfacing with generic HIDs, as
well as specific objects built on top of it for using joysticks,
computer mice, and computer keyboards as input. In addi-
tion, Steiner includes objects for processing the data from
the HID, including cartesian-polar transformation, filtering,
and logarithmic and exponential curves.

One year later, Steiner released and published the Map-
ping Library for Pd, building on the experience of the hid
library [9, 10]. Steiner states that the larger goal of the
library (beyond its use to the Pd and DMI communities)
is to start a dialogue on the subject of standard primitives
for mapping, analogous to standard unit generators for au-
dio. In this way the library serves to explore the sort of
basic functions that are necessary for mapping. There are
approximately 130 objects in the mapping library, coded
by Steiner and by Cyrille Henry, including a great num-
ber of transfer functions, curves, break-point functions, and
control-rate IIR and FIR filters. Interpolation objects and
some windowed statistics (mean, median, minima and max-
ima) are also represented.

Since the Mapping Library was developed with the goal of
defining and creating a complete set of mapping primitives,

255



it is not surprising that it is so exhaustive. In contrast to
our approach, the library uses normalized values (0–1) for
nearly all input and output, including for angles and musical
pitches. Both the hid and mapping libraries are included in
the Pd-extended distribution1.

3. THE DIGITAL ORCHESTRA TOOLS
The Digital Orchestra Toolbox (DOT) is a collection of
modular tools we developed for creating digital musical in-
struments for the McGill Digital Orchestra Project. Provid-
ing 130 tools, each with corresponding help/documentation,
the intention was to solve specific needs during project de-
velopment rather than to define and complete a set of map-
ping primitives. An additional difference from the Mapping
Toolbox is that, wherever feasible, the DOT employs physi-
cal units (e.g., radians, millimeters) rather than normalizing
in order to avoid assumptions about the context of use.

The Digital Orchestra Toolbox has been under active de-
velopment since 2006, and available publicly from the ID-
MIL website since 2008. We have tracked nearly 4000 di-
rect downloads of the toolbox since 2011, and it is also dis-
tributed as part of various DMI software driver packages
and compositions. It is currently available from the pack-
age manager built into Max.

3.1 Abstractions vs. External Objects
Unlike many packages available for extending Max, the dig-
ital orchestra toolbox consists only of abstractions – Max
patchers loadable as objects – rather than precompiled ex-
ternal objects. Thus, in addition to ensuring cross-platform
functionality, the internal structure and function of the tools
is viewable, understandable, and editable by users of the en-
vironment (Max) – within the context of that environment,
and thus provide not only functional, but pedagogical value,
encouraging reuse, adaptation, and appropriation.

3.2 Contents of the Toolbox
In this section we briefly outline the organization and cur-
rent contents of the Digital Orchestra Toolbox. This out-
line is not an exhaustive list of the available tools, but is
intended to simply highlight some of the more interesting
features.

3.2.1 Stream Processing
Since the toolbox was developed primarily for supporting
DMI development, the largest category of tools it contains
relate to processing streams of real-time sensor data. This
includes an array of smoothing filters (averaging filters, me-
dian filters), calculation of standard deviation or exponen-
tial moving deviation, detection of local minima and max-
ima, etc.

One of the most popular and useful abstractions added
to the toolbox ended up being leaky integration. As an es-
timator of recent “energy” expended by a performer over
the course of a movement, gesture, or sequence, the ‘leaky
bucket’ metaphor was both powerful and easily understand-
able by composers and performers. For this purpose, the
toolbox offers the abstraction dot.aggregate.leaky which
includes a simple linear leak by default but can be config-
ured to adapt leak size as a function of the internal aggre-
gated value – enabling for example a system with multiple
resting states that can be perturbed by the actions of a
performer.

3.2.2 Open Sound Control (OSC)

1http://puredata.info/

The toolbox also contains a number of abstractions related
to sending and receiving Open Sound Control (OSC) mes-
sages. The Max internal objects udpsend and udpreceive

already handle the low-level aspects of packaging OSC mes-
sages correctly, however it can be difficult to construct and
route OSC address strings (message identifiers) without re-
sorting to external objects such as CNMAT’s oscroute or
the Jamoma project’s j.oscroute. The DOT provides util-
ities for constructing address strings, and the abstraction
dot.osc.route for routing.

3.2.3 Serial Communications
Many of the digital musical instruments developed by our
research group rely on serial data transport from an em-
bedded platform such as Arduino2 to a laptop computer.
To support simple and trouble-free interfaces of this sort,
the DOT includes a wrapper for the Max internal serial
object that supports reading and/or polling the serial port
at a given rate. In practice, we have usually found that
pushing the serial data rather than polling for each sample
results in higher update rates and lower jitter, but can re-
sult in overflow and system crashes; to avoid this problem
the dot.io.serial abstraction is used to send a heartbeat
message to the Arduino firmware, without which the de-
vice switches to standby mode until the next heartbeat is
received.

Another method for increasing the communication rate of
our DMIs is to send binary data rather than ascii text (i.e.
in Arduino use the method Serial.write() rather than Se-

rial.print()). This method requires packetization of mes-
sages which we usually accomplish using the low-overhead
Serial Line Internet Protocol (SLIP coding). The abstrac-
tions dot.slip.encode and dot.slip.decode are provided,
along with examples for packetizing messages from Arduino
firmware.

3.2.4 Orientation
One of the more complex tasks in the creation of DMIs that
include motion or orientation sensing is to process data in
polar, spherical or quaternion representations, since näıve
application of operations such as averaging filters or inter-
polation cannot be used in those contexts. The DOT in-
cludes a few abstractions for converting between Cartesian
and polar/spherical coordinate systems (to complement the
existing internal objects available in Max), and a utility for
“unwrapping” a polar representation so that averaging fil-
ters can be applied. Basic quaternion operations are also
provided, including multiplication, inverse, conjugate, and
spherical interpolation. These have been employed for pro-
cessing and fusing acceleration, angular velocity, and mag-
netic field data from IMU/MARG systems in several DMIs.

3.2.5 Gesture
The gesture category currently only includes one abstrac-
tion: dot.gesture.jab. This tool was developed for char-
acterizing jabbing gestures from acceleration data for the
T-Stick DMI, and uses somewhat more complex signal pro-
cessing than a simple derivative (see figure 1). We hope to
expand the selection of gesture-related tools in the future.

3.2.6 Audio
The development of audio tools for DOT was motivated
by the notion that many musical gestures can be seen as
continuous functions of time, much like audio signals. To-
day’s standard computer’s audio processing capabilities sat-
isfy requirements for control intimacy (e.g. < 10ms latency,

2https://www.arduino.cc/

256



Figure 1: Left: Max patch for detecting jab ges-
tures for the T-Stick DMI. Right: graphs showing
the process of gesture extraction as the instrument
is jabbed in alternating directions every second; top:
incoming acceleration measurements; middle: win-
dowed maximum difference; bottom: debouncing
envelopes with identified jabs located at the peaks.

< 1ms jitter, > 1kHz bandwidth) and allow for sample-
accurate synchronization with media synthesis I/O streams,
which event-based transmission schemes often lack [11].

Besides signal conditioning tools (e.g. auto-scaling, mix-
ing), the DOT includes audio abstractions for following en-
velopes and detecting discrete events, as well as interpo-
lation of magnitudes and phases of multiple input signals
to a single output, a form of convergent mapping. The
DMI described in section 4.3 required sampling the mechan-
ical oscillation of elasto-resistive sensors at audio-rates; as
a consequence, we extended the DOT with tools for Fre-
quency Domain Multiplexing (FDM) via double-sideband-
suppressed-carrier (DSBSC) amplitude modulation.

This allows for the transmission of multiple gesture sig-
nals in a single audio channel which is often favoured over
Time-Domain Multiplexing (TDM) due to the relative sim-
plicity and ease of implementation. DOT includes tools
for extracting the real parts of multiplexed signals via het-
erodyne filtering (dot.am.demodulate.asynchronous~) and
extraction of instantaneous magnitude, phase, and frequency
from analytical signals (dot.sinusoid.properties~).

4. EXAMPLES OF USE
Here we present several DMI projects that were supported
by the toolbox.

4.1 The T-Stick DMI
The T-Sticks are a family of gestural musical controllers in
development since 2006 [5]. The hardware is presently in its
third revision and approximately twenty more T-Sticks have
been built, including prototypes integrating haptic feed-
back and additional sensing modalities. The T-Stick has
been performed and demonstrated many times internation-
ally, including appearances in North and South America,
Europe, and Asia. The repertoire of compositions for the
T-Stick includes works by eight different composers.

An effort was made to sense all of the affordances [6] of
the interface. A combination of inertial, pressure, deforma-
tion and multitouch capacitive touch sensing is used, with
all of the sensors and circuitry embedded inside the interface
body. From these sensors a large number of variables are
measured or derived: touching, squeezing, twisting, brush-
ing, hitting, shaking, swinging, tilting, and rolling.

In software, the T-Stick uses 55 instances of the DOT
tools, in addition to the objects used for communication
(the T-Stick uses the Max bindings for libmapper [4] to dy-

namically create mapping connections). Serial input and
SLIP decoding abstractions are used as described above,
and smoothing, denoising, debouncing, and polar or spher-
ical conversions are performed to condition the incoming
data for further processing or analysis. For some models of
T-Stick, gyroscope data (angular velocity) is decoded from
hacked WiiMotionPlus hardware and bias is removed with
adaptive filters prior to sensor fusion and processing using
the DOT’s selection of quaternion abstractions.

The tool dot.aggregate.leaky is used seven times in the
driver software, for calculating measures of brushing, brush-
ing “energy”, shaking, and a helical “eggbeater” gesture.

Figure 2: Efficient adaptive bias removal used for
processing rate gyroscope data. An inexpensive ex-
ponential approximation of signal deviation is used
to estimate activity; the bias estimate will converge
quickly when the sensor is at rest, but resist distur-
bance from noisy movement.

4.2 The Spine DMI
The Spine is a “prosthetic” digital musical instrument de-
veloped for the collaborative project Les Gestes, in which
we endeavoured to design new instruments for dancers [3].
The new instruments extrapolate from the T-Stick, which
we had already used in the performance Duo pour un vio-
loncelle et un danseur with the same collaborators. Start-
ing with foam prototypes, the Spine and its companion in-
struments the Rib and the Visor were developed iteratively
using participatory design through frequent workshops, par-
allel problem solving, and digital fabrication methods. The
current models are fabricated from laser-cut transparent
acrylic, transparent PVC tubing, and PETG rods. The en-
tire structure is assembled using interference fitting rather
than any glues or fasteners.

In terms of sensing, the Spine tracks and reports its ori-
entation and shape using inertial and magnetic-field sensing
at each end of its body. Unlike the T-Stick, sensor-fusion al-
gorithms run on-board each sensing node in the instrument
in order to support scaling to large numbers of nodes. While
porting quaternion tools to C for the embedded sensor fu-
sion eliminated the need for some DOT tools, a companion
visualization of the Spine was created for debugging and
presentation which required the addition of matrix versions
of the quaternion tools (figure 3).

Work on the Spine project also highlighted the need for
careful treatment of floating-point data when using IIR fil-
ters downstream, since even one NaN or INF value will persist
in the output until the patch is restarted. Subsequently,
“sanity checks” on floating-point data were added to our
regular process, and the dot.float.sanitize abstraction
is now embedded in several filter tools by default.

In rehearsal and on tour for the piece Les Gestes, two
Spine DMIs shared a driver application with a number of
Rib and Visor DMIs; in all, the application included 109
instances of DOT tools.

257



Figure 3: Left: live visualization of the Spine shape
and orientation; right: the prototype sensor-harp.

4.3 Sensor Harp DMI
This project was developed by Graham Boyes and our sec-
ond author within a course on DMIs at the SSMU of McGill
University in 2009. The aim was to build a physically-
informed gestural controller whose primary means of inter-
action involves the manipulation of a vibrating mechanism
and therefore may be considered a hybrid between a con-
troller and a sound generator. The controller consists of
thin PVC tubes into which regularly-spaced copper screws
are fixed. Inside the tubes individual wires are attached to
the copper screws on one end, and to inputs and outputs of
an audio interface on the other, transmitting sinusoidal car-
rier signals produced by the computer. The sensing system
consists of carbon-coated, elastic sensors which change their
electrical resistance as a function of stretch (Images SI Inc).
The sensors can then be used as connectors between the
copper screws closing the loop for returning the produced
carrier signals back to the computer. Manipulation of the
stretch sensors thus produces amplitude modulations which
can be extracted and used as control signals, see also [2]
for a similar approach to gesture acquisition from a 2D sur-
face. This acquisition scheme can be useful for detection of
performance gestures: the discontinuity in the signal when
plucked (in contrast to fast pulling or stretching) causes a
spike in the instantaneous frequency estimation, which we
found to be more accurate compared to amplitude-based de-
tection, such as envelope followers or Schmitt-triggers, for
example (cf. section 3.2.6). A major design goal was to rein-
force the physical interaction between performer and instru-
ment, making use of the controller’s inherent visual, tactile
and kinesthetic feedback. Rather than carrying the gestures
of the human performer, the modulated audio signals carry
gestures of the performer-system-interaction. Fig. 3 shows
a prototype build of the controller.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have described an open-source “toolbox”
consisting of more than 130 abstractions for the Max pro-
gramming environment, focused on supporting the task of
developing new digital musical instruments. An overview of
the toolbox structure and scope was provided, along with
several examples of use from the development of digital mu-
sical instruments.

This toolbox has continued to grow and evolve since the
project in which it originated, and we invite any inter-
ested programmers, instrument designers, composers or per-
formers to use, modify, or contribute to all aspects of the
project3.

3https://github.com/IDMIL/digital-orchestra-toolbox

Future work will focus primarily on improving the doc-
umentation for the toolbox. Each tool is already accom-
panied by a working example in the form of a Max help
patcher; we plan to add more in-depth descriptions and a
series of tutorials focused on cleaning and processing sensor
data streams and extracting “gestural” information.

6. ACKNOWLEDGMENTS
The creation of the Digital Orchestra Toolbox was sup-
ported by funding from the Fonds de recherche du Québec
- Société et culture and the Natural Sciences and Engineer-
ing Research Council of Canada. Development tool place
primarily at the Input Devices and Music Interaction Lab-
oratory, McGill University.

7. REFERENCES
[1] S. Ferguson and M. M. Wanderley. The McGill

Digital Orchestra: An interdisciplinary project on
digital musical instruments. Journal of
Interdisciplinary Music Studies, 4(2):17–35, 2010.

[2] R. Jones, P. Driessen, A. Schloss, and G. Tzanetakis.
A force-sensitive surface for intimate control. In In
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME, pages
236–241, 2009.

[3] J. Malloch. A Framework and Tools for Mapping of
Digital Musical Instruments. PhD thesis, McGill
University, December 2013.

[4] J. Malloch, S. Sinclair, and M. M. Wanderley.
Distributed tools for interactive design of
heterogeneous signal networks. Multimedia Tools and
Applications, 74(15):5683–5707, February 2014.

[5] J. Malloch and M. M. Wanderley. The T-Stick: From
musical interface to musical instrument. In
Proceedings of the 2007 International Conference on
New Interfaces for Musical Expression (NIME07),
New York City, USA, 2007.

[6] D. A. Norman. The design of everyday things.
Doubleday, 1990.

[7] X. Pestova, E. Donald, H. Hindman, J. Malloch,
M. T. Marshall, F. Rocha, S. Sinclair, D. A. Stewart,
M. M. Wanderley, and S. Ferguson. The
CIRMMT/McGill Digital Orchestra project. In
Proceedings of the International Computer Music
Conference (ICMC), pages 295–298, 2009.

[8] H.-C. Steiner. [hid] toolkit: a unified framework for
instrument design. In Proceedings of the 2005
International Conference on New Interfaces for
Musical Expression, pages 140–143, Vancouver,
Canada, 2005.

[9] H.-C. Steiner. Towards a catalog and software library
of mapping methods. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 106–109, Paris, France,
2006. IRCAM – Centre Pompidou.

[10] H.-C. Steiner and C. Henry. Progress report on the
mapping library for Pd. In Proceedings of the
PureData Convention, Montreal, Canada, 2007.

[11] D. Wessel and M. Wright. Problems and prospects for
intimate control of computers. Computer Music
Journal, 26:3:11–22, Fall 2002.

258


