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Abstract

This thesis project consists of developing a hand-held, one-thumb input device small enough

to be placed on gestural controllers and providing performers with a simple way to select

between multiple options with few movements of a thumb.

Most commercial input devices for the thumb make the assumption that buttons are

the de facto standard. However, buttons are not always the best solution especially where

space is very limited. This project explores a new approach to input design by analyzing

the thumb’s movements and designing a suitable input device that can track them. The

design progression from the first to the last prototype is presented in great detail.

The final prototype is compared to other existing one-thumb input devices used in

gestural controllers and mobile computing. The shortcomings of each one-thumb input

method is described with the final prototype presented as a possible solution in each case.
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Resumé

Cette thèse présente le développement d’une interface de contrôle spécifique pour le pouce.

Elle et destinée à être montée sur un controleur gestuel pour rendre possible une selection

simple de plusiers options ave peu de mouvements du pouce.

Les interfaces de contrôle pour le pouce que l’on trouve “dans l’industrie” se restreignent

à l’utilisation de boutons. Cependant, notament dans le cas où l’espace est limitée, ceux-

ci constituent pas toujour la meilleure alternative. Ce project explore donc une nouvelle

approche pour la conception de telles interface en se basant sur une analyse des mouvements

courants du pouce. Dans cette thèse la progression du design des prototypes pouvant capter

ces mouvements sera abordé de manière détaillé.

Le prototype final est comparé à d’autres interfaces de contrôle pour le pouce disponibles

sur des contrôleurs gestuels musicaux et aussi sur d’autres dispositifs portatifs (téléphones,

lecteurs MP3 etc). Les problèmes de chaque interface sont décrits et il est montré comment

le prototype final peut remédier à chacun d’entre eux.
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Chapter 1

Introduction

Using parts of the body not directly involved in playing notes to increase an instrument’s

control possibilities has always been a trend in both instrument design and performance.

For example, the trumpet is an instrument that only requires a single hand to play notes.

In the 1920s, a technique pioneered by jazz musicians using plunger mutes was developed.

The musician’s free hand used a rubber plunger placed over the flare to filter the trumpet

sound creating a “wah-wah” effect. This effect was also used extensively in electric guitars

except that it was done electronically with the use of a pedal. More recently, with the

availability of a wide variety of small sensors, the trend has been to attach them directly

to the instrument and use any free fingers or thumbs to actuate them in order to increase

the instrument’s control possibilities [3] [16].

In many handheld musical controllers the fingers are occupied with playing musical

notes, while the thumbs are involved in supporting the device and also in controlling pro-

gram changes, octave shifts, or changing other musical parameters. In these devices, the

thumb usually actuates various switches placed in a row [25] or distributed in matrices [4]

[23]. But the thumb’s range of motion is limited and the available space on these controllers

is too small to accommodate a large number of switches. Also, the lack of visual feedback

is a limiting factor to augmenting the number of switches available.

A number of different schemes have been devised to compensate for this. One approach

is to use potentiometers or rotary encoders to scroll through a list of dozens of different

parameters [9] [20]. This technique is not very practical because it requires fine tuning by

the thumb with practically no tactile feedback. Another approach actually involves the
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fingers as well, which bars them from being able to play notes during the process [25].

Therefore, there is a need for an input device with a very small footprint that gives a single

thumb the ability to make dozens of unambiguous selections without the need for visual

feedback.

1.1 Project Overview

This thesis presents the design of such a device. The design process began with observing

the movements of the thumb. The thumb can do three independent movements: a hori-

zontal movement (left/right), a vertical movement (up/down), and a flexing or extending

movement of the thumb (flex/extend). The next step was designing an input device us-

ing suitable sensors that can track these movements. Five prototypes were built each one

improving on previous prototype’s weaknesses.

Many possible applications of this input device were examined. Musical applications

included both traditional MIDI wind controllers as well as alternate gestural controllers.

Perhaps one of the more intriguing possible applications was in text entry. The potential

of using the input device for text entry in mobile computing was presented.

1.2 Thesis Overview

The remainder of this document is organized as follows. Chapter 2 (background) describes

the problem and analyzes design solutions that were presented by others. Chapter 3 de-

scribes the design process for the input devices developed for this thesis and the rationale

behind the decisions. Chapter 4 discusses possible applications of these input devices.

Finally, Chapter 5 presents conclusions, and points to future work.

1.3 Contributions

The main contributions of this thesis are the exploration of issues related to one-thumb

input devices, their design and construction as well as their application in music and text

entry.
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Chapter 2

Background

This Chapter is divided into two main sections. The first section examines musical con-

trollers that incorporate one-thumb control. The second section examines commercial one-

thumb input devices for text-entry.

2.1 Musical Background

In a majority of musical controllers and acoustic instruments augmented with sensors sur-

veyed for this thesis, the thumb was used to control one-dimensional effect parameters like

volume or distortion. In a couple of cases, the thumb was used for much more sophisti-

cated purposes controlling a wide variety of discrete parameters. The former cases will be

described first.

Burtner [2] describes a tenor saxophone augmented with sensors. In this case, FSRs are

attached beside each of the thumb rests of the saxophone and the applied thumb pressure

was used to control an effect parameter including distortion, frequency modulation, or the

amplitude of noise generators. Kapur et al. [11] retrofitted a sitar with multiple sensors

in order to extract gestural information such as pitch, thumb pressure, pluck time and

head tilt. Unlike Burtner [2], Kapur et al. [11] first described how he analyzed the gestural

information from a performing sitar player before deciding how to map the sensor data.

From his analysis, Kapur et al. [11] deduced that the thumb pressure was best suited to

control such parameters as resonance oscillation, volume, delay, and warping of partials.

Sinyor and Wanderley [22] created a gyroscopic instrument with an FSR placed at the

thumb position which was used to control volume or a delay. Similarly, Lebel and Malloch
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[13] also used an FSR to control the volume with the thumb. Schiesser and Traube [21] had

each thumb controlling both a switch and an FSR. The switches were used for triggering

musical events while the FSRs were used to control harmonic distortion. Finally, Freed

and Uitti [6] used an FSR strip accessible by the thumb to control the vibrato of a cello

augmented by sensors. In all these examples the thumb’s applied pressure was simply used

to control a specific effect parameter.

Fig. 2.1 Yamaha’s WX5: top view

Fig. 2.2 Yamaha’s WX5: bottom view

Several commercially available wind controllers have devised schemes for the thumbs to

control a wide variety of parameters. One of the more popular of these wind controllers

is the WX5 (figure 2.1 and 2.2) by Yamaha [25]. The left thumb controls a group of four

buttons used for changing octaves while the right thumb controls a pitch bend wheel and
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two other buttons, namely the key hold button and the program change button. The key

hold button can be used to hold a specified note while playing other notes. Pressing down

on the program change button changes the functionality of the note playing keys (controlled

by the fingers) so that they can used for changing voices, bank number transmission, or

the MIDI transmit channel. Using the note playing keys is a big disadvantage because the

musician has to temporarily stop playing notes in order to make a voice change. Another

popular model the EWI4000s made by Akai has a similar scheme for selecting a new voice

[1].

Fig. 2.3 The Pipe layout diagram: View from above (top) and below (bot-
tom). Designed and built by Scavone [20]

The Pipe is an experimental MIDI wind controller designed and built by Scavone [20].

The top of The Pipe has an FSR sensor in each of the seven drilled finger depressions in

a traditional two-hand wind instrument arrangement. The bottom has two momentary

switches and each side has a rotary potentiometer (figure 2.3 and figure 2.4). In one

configuration of The Pipe, the rotary potentiometers were used to circulate through MIDI

program numbers 0-127. However, this was not deemed an adequate solution because it

requires the thumb to fine tune the potentiometer without any active tactile or visual

feedback. Even with a scroll wheel it would be hard to know the exact value selected

without a display. Another disadvantage is that it is not possible to ’jump’ directly to a

particular value without going through all the values in between.
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Fig. 2.4 The Pipe: View from above (top) and below (bottom). Designed
and built by Scavone [20]

Fig. 2.5 The Bento-Box: designed and built by Hatanaka [9]. The fingers
control the notes and effects while the thumbs control chord selection, volume,
key signatures, and style selections.

The Bento-Box, a novel MIDI controller designed by Motohide Hatanaka, employs a

similar approach to The Pipe [9]. The notes are played by pressing down on buttons

using the fingers of the right hand while the effects are controlled by the fingers of the

left hand. Instead of rotary potentiometers, the Bento-Box uses slide potentiometers to
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control various discrete parameter changes such as chord selection, key signature, and style

selection. FSRs are also added for volume control along with a couple of buttons used in

conjunction with the potentiometers (figure 2.5 and figure 2.6). However, this approach

was abandoned presumably for the same reasons as the The Pipe’s rotary potentiometers.

Figure 2.7 shows another example of a one-thumb input device comprising buttons and a

slide potentiometer while figure 2.8 shows a thumb controlling it.

Fig. 2.6 The Bento-Box layout diagram for the thumb controls.

Fig. 2.7 The Meta-Instrument: 4 switches and a slide potentiometer used
for thumb control.
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Fig. 2.8 The Meta-Instrument: the thumb is actuating the input device.

2.2 Text Entry Background

This section describes thumb input devices used in common commercial products like cell

phones and handhelds. A brief summary of the text entry methods will be presented as

well as some of their limitations.

2.2.1 Cell Phone Keypad

The most common mobile interface is the cell phone’s 12-key keypad. Although fine for en-

tering numeric characters, entering letters requires a more elaborate method to compensate

for the fact that there are only 12 keys to choose from.
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Fig. 2.9 The cell phone keypad.

The 12-key keypad layout is well known to anyone that has a regular telephone or a

cell phone. There are 10 number keys with a star (*) key and pound (#) key. Three or

four letters are added to the number keys 2 through 9. When the user is inputting text

via Multitap on the cell phone, a particular character is typed by locating the key with

the desired letter and pressing down on it one or more times until it cycles into view. For

example, typing the letter “S” would require the user to press the number 7 key four times.

The advantage of this is that it is simple and comprehensible, but the need for multiple key

presses for a single character considerably slows typing. Another example demonstrating

the limitations of this method is typing the word “ON”. This would require pressing the

6 key three times for the letter O, and twice for the letter N. In other words, the user

would press the same key 5 times in a row and it would be impossible for the cell phone’s

software to know if the user intended to select the letter O first followed by the letter N

or vice versa. This problem, known as segmentation, is solved by pausing after the first

character and waiting for the system to timeout. Another segmentation technique involves

pressing a special key between the O and the N in order to separate them. In summary, the

Multitap method can be quite tedious and completely impractical for doing text editing or

even writing long emails.
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Fig. 2.10 The miniature qwerty keyboard.

2.2.2 Miniature Qwerty Keyboard

The miniature qwerty keyboard is currently one of the most common interface for PDA and

smartphones. PDAs and smartphones are beginning to use more sophisticated software like

text editors and web browsing. These types of devices are not designed for single thumb

input like cell phones and text entry is usually done with both thumbs while the palm and

fingers grasp the device. More recently, Apple released the iPhone that has a soft keyboard.

Instead of using buttons, the keys of the qwerty keyboard are displayed on a touch screen.

The advantage is that the soft keyboard can disappear when text entry is not necessary,

doubling the size of the display area. However, not having actual buttons means that there

is no tactile feedback.

2.2.3 Related Research

Dunlop and Crossan [5] jointly developed a predictive text input scheme that works simi-

larly to T9. They compared it to Multitap and found that their predictive technique used



2 Background 11

half the keystrokes and was about 20% faster.

In a very intersting paper Kober et al. [12] compared ambiguous and disambiguous

predictive techniques. Their research showed that as users make typing mistakes, the

speed of disambiguous predictive techniques degraded to Multitap levels or worse.

Gutowitz [8] came to similar conclusions in his 2003 paper. Predictive techniques were

found to be faster than Multitap only if the words were in the dictionary and spelled cor-

rectly. If these conditions were not met, predictive techniques would perform significantly

worse.

Pavlovych and Stuerzlinger [18] described the Less-Tap technique that is the same

as Multitap except that the letters are rearranged within each button according to their

frequency. Surprisingly, the Less-Tap technique only resulted in an average speedup of

9.5%, although some participants were able to type 30% faster than Multitap.

Inspired by T9 and the alphabetically constrained cell phone keypad, Gong and Tarasewich

[7] presented a research paper that explored and compared different constrained keypads

with unconstrained ones. Their conclusion was that constrained keypads with a predic-

tive scheme were easier to learn for novices, but that the optimal number of keys and

configuration of the letters depended on the words tested for in the study.

Wigdor and Balakrishnan. [24] compared their own text entry technique called Chordtap

with Multitap. Chordtap is a technique that used one thumb to select the cell phone key

with the desired letter, while the other hand presses one of three switches located on the

back of the phone to select the particular letter on the key. The technique was found to be

faster than one handed or two handed Multitap.

Two input devices for text entry, Multitap and Rollpad, were compared in Oniszczak

and Mackenzie [17]. Similarily to Chordtap, Rollpad’s goal was to be able to both simul-

taneously select the key with the desired letter, and at the same time select the particular

letter on the key. Rollpad accomplished this by using the inclination of the keypad while

the key was depressed.
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Chapter 3

Prototypes

This chapter presents the 5 prototypes designed and built for this thesis , and shows how

the process was improved, from the first to the last. The physical apparatus, sensors,

electronics and software are described in detail and their advantages and disadvantages are

discussed as well. The chapter begins with the design rationale behind the prototypes.

Fig. 3.1 Touching states: a)tip b)heel c) flat. d) Pushing states: North,
South, East and West. e) Lateral stroke states

3.1 Design Rationale

The first step in the design process is the analysis of the movements of the thumb. It

was observed that the thumb can touch a surface in three different ways namely with the
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tip (figure 3.1 a)), with the “heel” (figure 3.1 b)), or flat (figure 3.1 c)). These three

touching movements were classified as touching states. It should be noted that the number

of touching states can be increased depending on the input device. The thumb can also

push North, South, East or West. These 4 movements (figure 3.1 d)) were classified as

pushing states. Pushing states are when the thumb pushes on a stationary object like an

isometric joystick. If we were to allow for pushing the joystick diagonally, there would be 4

extra pushing states. However, none of the input devices described below have these added

pushing states. Figure 3.1 e) shows the final category of lateral stroke states. In this case

the thumb slides laterally (side-to-side) along the surface and has the option of beginning

in either the left, middle, or right positions and ending in either the left, middle, or right

positions. Therefore, there are 9 (3 X 3) different lateral stroke states. The combination

of these different states served as the inspiration for the various designs described below.

For example, because the lateral stroke states are largely independent of the lateral stroke

states, there are 27 possible combinations of lateral stroke states with the touching states (3

touching states X 9 lateral stroke states). One possible combination could be a tip touching

state starting in the middle and sliding along the surface of the input device to the right

position. As we shall see in the first prototype, the number of touching states can actually

be increase to six with the right sensor configuration.
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3.2 First Prototype

3.2.1 Mechanical Apparatus

This first prototype uses combinations of 6 touching states with the 4 pushing states po-

tentially giving a total of 24 possible combinations or choices. This prototype was made up

of three switches in a row and one miniature joystick on top of the middle switch (figure

3.2). Figure 3.3 shows a hand holding the input device. A thin transparent sheet of acrylic

was used for the base of the input device. The three switches, which are not visible on the

figure, were fastened to the sheet of acrylic. Each switch had a transparent acrylic blocks

fastened on top. An extra white block (panel) was placed on the front and back switches to

elevate the structure relative to the joystick. These three blocks were held together by eight

supporting blocks surrounding them (three on each side and one at the front and back).

The contacting vertical sides of the blocks were lined with Teflon tape so that they moved

independently of one another when the thumb pressed down on them. The joystick’s wires

can be seen coming out on the right side figure 3.3).

Fig. 3.2 First prototype.



3 Prototypes 15

Fig. 3.3 First prototype being held.

3.2.2 Sensors and Electronics

The miniature joystick used in this prototype [10] was made by Interlink Electronics. Pres-

sure exerted by a finger was transmitted to four FSRs located to the south, north, east, and

west of the joystick’s base. Four of the five wires, coming out from the joystick, outputted

the analog FSR voltage signals using a simple voltage divider [10] while the fifth supplied

the power to the joystick. Finally, the switches used in this prototype were tactile momen-

tary (N/O) switches made by Omron Electronics with an operating force of 130 g. The

analog joystick signals and switch signals were input into the computer via the Digitizer.
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Fig. 3.4 First prototype: touching states.

3.2.3 Operation

Figure 3.4 a) shows a side view drawing of how the switches are activated in the first

prototype. As mentioned above, one switch was placed in front of the joystick, the other

behind, and a final switch was placed beneath the joystick. The thick black horizontal

lines were the panels that were placed on top of the push button switches. The switches

are represented by the boxes below the panels. An “X” inside the box indicates that the

switch is actuated by the thumb (figure 3.4 c) to h)). Figure 3.4 b) shows a top view of the

first prototype. The three squares are the panels. Figure 3.4 c) through h) shows all six
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Fig. 3.5 First prototype: 24 different choices.
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possible switch combinations that could have been simultaneously actuated by the thumb.

Both a top view and a side view are shown for each of these combinations. It is important

to note that the thumb is always in contact with the joystick. While actuating the front

switch (figure 3.4 c)), the finger can simultaneously push the joystick North, South, East

or West. As mentioned above, this is because the pushing states and the touching states

were assumed to be largely independent of one another. When the joystick direction was

factored in, the number of joystick/switch choices is 24 (figure 3.5).

Fig. 3.6 First prototype: Max/Msp patch.

3.2.4 Software

As mentioned above, Max/MSP was used to analyze the incoming joystick and switch

sensor data and output the recognized user’s input. Figure 3.6 shows the patch used to

do this. A subpatch called sortChannels was written (figure 3.6 a)) to input the raw data

from the digitizer. The joystick sensor data (figure 3.6b)) was analyzed in the “direction”
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subpatch (figure 3.6c)) by simply outputting which direction signal (either North, South,

East or West) was strongest at the time. This value was stored in the vector in figure 3.6 e)

along with the actuated switches. Once the user lifts his/her hand off of the switches, the

vector is sent to figure 3.6 f) where the choice is recognized. In other words, the joystick

direction stored in the vector was the last direction before the thumb disengaged from

the switches. This could be a little tricky because one would have to make sure one was

applying pressure on the joystick in the correct direction before lifting the thumb off of the

switches.

3.2.5 Discussion

This prototype met the basic requirements outlined in the beginning of this document,

namely the user was able to perform pushing states and touching states at the same time.

But the use of a joystick proved problematic because one would inadvertently apply un-

wanted pressure on the isometric joystick during the act of actuating the switches which

would go completely unnoticed by the user. In other words, the assumption that the

pushing states and the touching states are largely independent was proven incorrect. The

raised joystick also made selecting the front or back switches somewhat awkward. More-

over, because the joystick was raised higher than the front or back switches it was easy to

sometimes unintentionally trigger the middle switch underneath it. Finally, the joystick

would sometimes be inadvertently pushed in the wrong direction during the touching state

movement. For all its shortcomings, the first prototype did work if the user was careful

enough. Furthermore, it was assumed that most of these problems were solvable and a new

design was conceived. In the end, this prototype hinted at the possibility that a one thumb

input device based on the idea of touching states and pushing states could be designed if

enough care was taken to tackle these problems.
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3.3 Second Prototype

3.3.1 Mechanical Apparatus

In order to improve on the first prototype, the joystick was attached on top of a spring

mounted slider (male part) that would retract downward into the slider guide (female part)

and out of the way when the user would actuate the front or back switches. Figure 3.7

shows the red joystick on top of the slider with switches on each side. Although it was

possible to add a middle switch that would be triggered at the end of the spring mounted

slider’s travel, none was added. If the second prototype showed enough promise it would

be added later.

Fig. 3.7 Second prototype.

Another difference was that there were two switches staked on top of the other. The

same tactile switches were used as in the first joystick prototype but they were actually

mounted on top of regular pushbutton switches. According to the specifications these

pushbutton switches would require three times as much force to activate them and thus

there would be two different pressure levels that could be detected by the stacked switches,

increasing the number of possible choices. However, this idea was immediately abandoned

because it was awkward to have the user distinguish between two pressure levels. A hot

glue gun was used to immobilize the pushbutton switch that ended simply being used as a

platform for the tactile switches. Thus, there were only 3 touching states to choose from
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and the same 4 pushing states as in the first prototype. A round plastic panel was added

to the top of each tactile switch to increase its contact area. A plastic handle was added

to allow the prototype to be firmly held (figure 3.8. Teflon tape was adhered to both the

slider and the inside of the slider guide.

Fig. 3.8 Second prototype being held.

3.3.2 Sensors and Electronics

The CTS 109 Series joystick manufactured by CTS Corporation replaced the one from the

first prototype. Pressure exerted by a finger on the joystick is transmitted to four strain

sensitive thick-film resistors inside. A Wheatstone bridge and amplifier allowed for the

output voltages to be proportional to the applied force which was an advantage over the

non-linear FSR based joystick of the first prototype. The CTS joystick was not only able

to detect lateral pressure along the x and y axis, but was also able to detect downward

pressure (z axis) as well. However, only the x and y directions were used. A red rubber

cap was placed on top of the joystick.
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Fig. 3.9 Second prototype: touching states.

3.3.3 Operation

Figure 3.9 shows the 3 touching states. As mentioned above there is also 4 pushing states

giving a total of 12 possible choices (figure 3.10). The joystick’s plastic cap had a rough

rubber texture keeping it firmly in place under the thumb without any slipping. The spring

mounted slider retracts quite smoothly and nicely but fits snuggly inside the Teflon padded

slider guide. The handle keeps the hand and by extension, the thumb, in perfect position

above the joystick. There was nothing mechanically wrong with this second prototype and

yet, as we shall see in the discussion, it did not meet the author’s expectations either.
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Fig. 3.10 Second prototype: 12 choices.

3.3.4 Software

The Max/MSP patch (figure 3.11) was very similar to the first except for a few details.

The “p separate” (figure 3.11 b)) object had six outputs with the first and second being

the x and y components of the joystick and the next two relating to the tactile switches.

the last two outputs represented the pushbutton switches which were not actually used.

The joystick data from the first two outputs were then sent on to figure 3.11 c) where the

signals were analyzed and a direction established and then stored in the vector in figure

3.11 e). The switches which were activated were also stored in that same vector. As in the

first prototype, once the switches were released by the user, the data stored in the vector

was analyzed by “p vector” and the choice made by the user was determined.
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Fig. 3.11 Second prototype: Max patch.

3.3.5 Discussion

Although the spring mounted joystick made actuating the switches more ergonomic, sur-

prisingly it did not solve the problem of inadvertently pushing the joystick in a wrong

direction. This would occur because the user would simultaneously have to push the joy-

stick and actuate a switch at the same time. For example, if the user wanted to push the

joystick West and actuate the bottom switch, the switch actuation movement of the thumb

would inadvertently push the joystick North as well, resulting in a North-West direction

of the joystick which is an ambiguous direction. The isometric joystick’s lack of tactile

feedback made this prototype frustrating since the user could never really be sure if he/she

was doing the correct movement. Thus, the joystick concept had to be scrapped and a new

design had to be attempted.
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3.4 Third Prototype

3.4.1 Mechanical Apparatus

After the unsatisfying performance of the joystick prototypes a new design incorporating

touch sensitive strips like the one in figure 3.12 was devised. This prototype used the

concept of touching states and lateral stroke states and had no pushing states. Two sliders,

a front slider and a back slider, were both glued to a base (figure 3.13). Each base (with the

strip) was fastened to a slider guide (figure 3.14) which in turn was placed onto the slider.

The slider itself was fused to the main base of the prototype. Figure 3.15 shows a touch

sensitive strip fixed to a slider guide and mounted on to the back slider with the front slider

exposed. Unlike the second prototype, in this design the sliders were stationary while the

slider guides moved up or down. Figure 3.16 shows a piece of plastic protruding from the

side of one of the slider guides. The whole slider guide/strip assembly was actually resting

on top of the switch, and thus would only move down as much as the travel of the switch

which was half a millimeter. Once again, Teflon tape was placed on both the sliders and

on the inside of the slider guides to minimize friction.

Fig. 3.12 Third prototype: pressure sensitive strip from Infusion Systems.

3.4.2 Sensors and Electronics

The strips mentioned above were bought from Infusion Systems (figure 3.12) and two

tactile switches by ITT Industries were purchased from Digikey. The active area of the

strip measured 14.0 cm by 2.0 cm and 0.6 cm thick and plugged directly into the digitizer.
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Fig. 3.13 Third prototype: male part.

Fig. 3.14 Third prototype: female part.
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Fig. 3.15 Third prototype: front slider exposed.

Fig. 3.16 Third prototype: slider guide and strip assembly actuating switch
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The strip was a one dimensional sensor designed to measure the position of a finger along

the surface of the strip. Although these sensors were supposed to be linear in fact they

were found to be of very poor quality with each strip having a different maximum output

voltage varying as much as 35% from one strip to the next.

Fig. 3.17 Third prototype: 6 touching states.

3.4.3 Operation

The thumb can touch or slide along one or both sliders and can also actuate the switches

by pressing down on one or both strips (figure 3.19). Therefore there is 6 touching states

(figure 3.17) and 9 lateral stroke states giving a total of 54 choices (figure 3.18). Each of

the 54 rectangles in figure 3.18 represent a top view of the third prototype with the top and

bottom halves representing the front and back strips respectively. The arrows represent

finger strokes along the strip where the tail of the arrow is the point where it first engages

the strip and the head of the arrow is the last point on the strip before the finger is lifted

off. The square dots symbolize the finger touching the strips without sliding. Finally, the

red (or gray) and black colors represent whether or not the switch is actuated.
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Fig. 3.18 Third prototype: 54 choices.

Fig. 3.19 Third prototype: thumb operating prototype.
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Fig. 3.20 Third prototype: Max patch.

3.4.4 Software

Figure 3.20 shows the Max/MSP patch used for this prototype. The first two outputs of

“p separate” (figure 3.20 b)) are the touch sensitive strip sensor data, while the next two

outputs represents the two switches. The patch is designed to capture the initial and final

positions along with the actuation status of the switches. All of this is stored in the “pack”

object in figure 3.20 d). When the finger is lifted off the strips the stored information was

triggered (figure 3.20 c)) and sent to “p vector” where it is analyzed and the user selected

choice is determined.

3.4.5 Discussion

Although this prototype fell a bit short of expectations, it showed the most promise of all

the three prototypes. With the right sensors this design was the most likely to succeed.

Nevertheless there were some problems. The biggest one was the touch sensitive strips

required the thumb to apply a relatively strong and steady pressure during the entire

stroke. This would often result in inadvertent triggering of the switches and using switches

with a higher actuation would make pressing down on them too much of a chore. Another

issue was the inconvenience of sliding along two strips at the same time. So even though

theoretically it was possible to have 54 different choices, practically speaking, most were

not very easy to do consistently or easily. Thus, if we were to eliminate all the problematic
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choices we would only be left with the first two columns of figure 3.20 or 18 choices. Friction

of the finger along the surface was also problematic. Using Teflon tape helped a little but

not enough. Using a switch for each strip was a silly design mistake since a single switch

under both strips would have produced exactly the same number of choices. In other words,

it would be practically impossible to slide along both strips while actuating one switch but

not the other. The next prototype solved this problem by constructing the sliders as a

single unit. In the end the touch sensitive strips were poorly made and not suitable for this

application. A new sensor needed to be found as a replacement.
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3.5 Fourth Prototype

3.5.1 Mechanical Apparatus

Once again, this prototype was based on the touching states and the lateral stroke states

design concept. It was comprised of a base, two sliders projecting from the base (figure

3.21), and a slider guide structure, with two touch sensitive strips adhered to it, mounted

on the two sliders. Figure 3.22 shows the bottom of the slider guide structure. Notice

that there were three slider guides. The middle slider guide was used for the slider wheel

assembly (figure 3.23 while the other two slider guides were mounted on top of the two the

sliders projecting from the base. The slider wheel was made of a blue bead on an axle (so

it can rotate)) installed on a slider. Figure 3.24 shows the slider guide structure mounted

on top of the sliders, but without the slider wheel. Figure 3.25 displays a fully assembled

fourth prototype held by a hand and shows the two touch sensitive strips as well as the

spring mounted slider wheel. The slider wheel is simply used as a reference point for the

thumb.

Fig. 3.21 Fourth prototype: male parts.

3.5.2 Sensors and Electronics

In this prototype, the touch sensitive strips were “homemade” by the author using an array

of six FSR sensors for each strip (figure 3.24). The pressure sensors were placed in a row

beneath the piece of soft polyurethane overlay with Teflon tape placed on top. Applying
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Fig. 3.22 Fourth prototype: view of the bottom.

Fig. 3.23 Fourth prototype: slider wheel.
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Fig. 3.24 Fourth prototype: without slider wheel.

Fig. 3.25 Fourth prototype: thumb operating prototype
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pressure on the overlay would deform it and transfer the pressure onto the pressure sensors

below. As before, each sensor was connected to the Digitizer. Although it was possible to

add a switch to this prototype, none was added for the preliminary evaluation. Because

of previous experience, the author decided to quickly evaluate these new strips before

proceeding any further with this prototype.

Fig. 3.26 Fourth Prototype: 27 choices.
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3.5.3 Operation

The biggest structural difference between this prototype and the third was the slider wheel.

It was used so that the thumb would be able to distinguish between the middle, left side

and right side of the strip. Because there was no switch beneath the strips there are only

3 touching states and 9 lateral stroke states. Figure 3.26 represents all the possible choices

available for the fourth prototype. As with the third prototype, the arrows represent a

thumb sliding along a strip, while the squares represent touching the strip.

3.5.4 Software

The software used in this prototype was similar to the third prototype except the position

along the “homemade” strips determined which FSR sensor in the strip had the highest

value. Linear interpolation would have given a much more precise location, but this was

not necessary because the important criteria was whether the position of the thumb was

on the left, middle or right.

3.5.5 Discussion

Although, individually the FSR sensors were more sensitive than the infusion systems touch

sensitive strip used in the previous prototype, when arranged in a row with an overlay they

required even more pressure than the infusion systems strips. Moreover, sliding the thumb

along the strips was fatiguing and not a realistic solution for effortless input. Sliding the

thumb along both strips compounded the problem. The idea of using pressure sensitive

sensors like the ones used in both prototypes three and four were abandoned. One positive

result from this prototype was that the size and spacing of the strips felt right. With the

right sensors, this setup had the potential to work.
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3.6 Fifth and Final Prototype

3.6.1 Mechanical Apparatus

The final prototype uses capacitive technology and is simply made up of four green PVC

insulated wires and a single red PVC insulated wire perpendicular to the green ones (figure

3.27). The wires are fixed to an acrylic sheet using double sided tape. The acrylic sheet itself

is mounted on top of a tactile switch. The wires are connected to circuits on breadboards

which, in turn, plug into the Digitizer (figure 3.28. For testing purposes some choices were

mapped to letters of the alphabet.

Fig. 3.27 Fifth Prototype: close-up view of strips.

3.6.2 Sensors and Electronics

The heart of the circuit (figure 3.29) is the QT301 made by Quantum Research Group

which is a 8-pin DIP capacitance to analog converter IC [19]. Figure 3.29 represents a

single electrode circuit (thus the prototype requires five of these) with the square electrode

representing the wire electrode. The analog output is connected directly to the Digitizer.

The tactile switch used in this prototype is the same as in the first prototype.

The QT301 essentially measures the amount of contact surface area between a thumb

and the wire. The more contact surface area, the larger the analog output voltage. In
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Fig. 3.28 Fifth Prototype: wider view of strips, breadboards, digitizer and
computer.

Fig. 3.29 Fifth Prototype: circuit.
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order to have the circuit working properly, the QT301 needs to be calibrated to sense the

amount of capacitance when the thumb is away from the wire, which is the lower bound,

and when the thumb is pressed up against the wire, which is the upper bound.

Unlike FSRs, capacitive sensors are truly touch sensitive and are thus ideal for this

application. Similarly to the third and fourth prototypes, the wire electrodes were arranged

such that two green wires make up the front touch sensitive strip while the other two make

up the back strip (figure 3.27). Even though the electrodes measure contact area, they

were essentially used as on/off switches in this application. Thus, each strip could only

sense three discreet areas namely when the finger was on the left green wire, or the right

green wire, or on top of the middle red wire.

Fig. 3.30 Fifth Prototype: 36 choices.

3.6.3 Operation

Just like the third and fourth prototypes, this one is also based on the lateral stroke states

and touching states. There are 6 touching states and although it is theoretically possible

to make all 54 choices (see figure 3.18 the number was reduced to 36 (figure 3.30)) due to
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the fact that the middle red wire makes the margin of error very slim and it is difficult to

consistently start in the middle position without inadvertently triggering the left or right

wires. In other words, because the sensors were essentially on/off switches the user would

have to make contact with the middle red wire before touching any of the other wires which

was too difficult to do consistently. So all the choices in figure 3.18 that began in the middle

position were eliminated and only the choices beginning on the left or right were used for

this prototype.

Fig. 3.31 Fifth Prototype: Max patch.

3.6.4 Software

The max patch used in this prototype is very similar to all the others (figure 3.31). A more

complicated patch was designed to include all 54 choices but it was much more complicated

and was not robust enough to handle very small mistakes. In other words, the input stroke

would have to be perfect every time with no margin of error. As mentioned above, this

was because the sensors were essentially on/off switches instead of being able to estimate

the position of the thumb along the strip.

3.6.5 Discussion

This prototype was by far the best and worked quite well overall. Using truly touch

sensitive strips made all the difference. Sliding the thumb over the plastic wire insulation
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was smooth and effortless and made inadvertent triggering of the switch much less likely.

However, only using three sensors per strip made it practically impossible to include the

lateral stroke states that begin in the middle position. But the design concept proved

successful enough and an improved version using more sensors would be good enough to

test in a usability study.
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Chapter 4

Discussion

The goal of this research was to create a one-thumb input device giving the user the ability

“touch type” dozens of different commands using a single thumb. This device would be

applicable in a variety of situations that require the selection of dozens of different discrete

choices. The progression from the first to the last prototype went through many changes in

both the sensors used and the design concept. The final prototype was found to work well

enough to warrant further research. The following sections will discuss the progression of

the prototypes as well as some possible applications in text entry and music.

4.1 Prototype Progression

The idea of creating a one thumb input device for the thumb was much more difficult

than anticipated. The original concept was inspired by video game consoles and the IBM

Thinkpad laptop isometric joysticks (a.k.a pointing sticks). It was observed that the thumb

would move too much when controlling the joystick and did not seem to have the ability

to control anything else. The idea of using an isometric joystick instead seemed like an

interesting idea. The thumb would still be able to push a joystick, but would not need

to be displaced from its original position. Therefore, the thumb might be able to actuate

switches while it is controlling the joystick. The first prototype used an FSR based joystick

made by Interlink Electronics. It was found that this particular joystick required too much

pressure for this application. But that was the least of the problems. The biggest one was

the fact that the joystick was raised too high and made selecting the front or back switches

awkward. The high joystick position also caused inadvertent actuation of the switch below.
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There was also the problem of inadvertently pushing the joystick in the wrong direction

when actuating the front or back switches. It turned out that in this particular setup,

the touching states and pushing states were not independent of one another as it was

assumed in the beginning. The switches, on the other hand, were very good and had the

right actuation pressure. Nevertheless, the joystick concept was not discarded and certain

improvements were devised to improve it.

The second prototype used the same type of isometric joystick used in older laptops as

a pointing device. Initial tests showed that it was quite sensitive, consistent, and overall a

good sensor choice. It was mounted on a spring mounted slider. A building technique was

developed that made the slider fit perfectly into the slider guide. This was important, as

the whole point was to make sure the joystick did not have any horizontal movement. The

joystick needed to stay perfectly still, and only be allowed to move up and down. Using

Teflon made this vertical movement very smooth and could be pressed down effortlessly

by the thumb. A handle was added and positioned so that the thumb would be in the

most ergonomic position possible. The addition of the slider and guide certainly made it

less awkward compared to of the first prototype. However, the second prototype did not

solve the fact that the touching states and the pushing states were not independent of

one another. The whole concept of this input device was founded on their independence.

Unfortunately, this was not solved by adding a slider and guide. Therefore, the joystick

concept was completely abandoned and a new design was needed. A design where the

touching states were truly independent was needed.

The idea of using two touch sensitive strips was introduced in the third prototype. Each

strip was mounted on top of a slider guide. The strip and slider guide unit was then placed

on a slider that itself was mounted on a base. After initial testing, the strips were found to

be quite inadequate. They required the thumb to apply strong and steady pressure along

the whole lateral stroke. If this type of consistent and steady pressure was not applied, the

sensor would lose the position of the thumb as if it was lifted off the strip. Unfortunately,

applying consistent pressure along two strips was practically impossible. However, this

prototype showed promise and it was decided to continue to build more prototypes using

the two strip design concept.

For the fourth prototype, it was decided to build a “homemade” pressure sensitive strip

using an array of six FSR touch sensors. The FSR array was covered by a deformable foam

overlay and Teflon tape was stuck to the foam to minimize the thumb’s friction along the
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strips but was surprisingly not as effective as anticipated. In the end, the “homemade”

strips suffered from the same problem as before: they required too much force to operate.

One feature that distinguished this prototype from the rest was the addition of a roller

wheel that was placed between the two “homemade” strips, protruding above the surface

of the strips. It was designed to retract downward when the thumb rolled over it and

served as a reference point to distinguish between the three possible starting points of a

lateral stroke state: namely: left, middle, and right. This worked quite well and was a

good solution for giving the user tactile feedback on the thumb’s position relative to the

middle. However, the roller wheel was not used in the final prototype because it made the

prototype much too large. It is possible that roller wheel concept might return in future

work if a more compact design is created. In retrospect, this prototype design is similar

to that of a mouse, in that the mouse’s scroll wheel is also between two strips. Except the

strips are just plastic buttons and the scroll wheel does not retract very much.

The fifth prototype was the one that worked best primarily because of the capacitive

sensors chosen for the “homemade” strips, that in the third and fourth prototypes were

built using pressure sensitive technology. Capacitive sensors require almost no pressure

because they sense the surface area that the finger makes with the sensor. So the lightest

touch would easily be sensed making them ideal for this application. The only problem

was not the sensors themselves, but the way the sensors were arranged. As can be seen on

figure 3.27 each strip was comprised of two green wires. Thus, the left position would be

sensed by a strip if the left green wire was touched and the same would be true for the right

position. However, the middle position would be sensed when the finger touches the single

red wire perpendicular and between the left and right wires of either strip. This design was

flawed because it did not give the user room to consistently hit the middle. If the thumb

was slightly off target, it would inadvertently touch one of the green wires. This could

easily have been avoided if the wires were arranged in an array with each wire seamlessly

merging with the other, making a single wire. In other words, the strip would be made up

of three wires line up in a row.

Of course, using more sensors would be better. Five capacitive sensors per strip would

probably be more than enough and give the user enough “wiggle” room to select the

left, middle, or right positions he/she intended. Besides the low number of sensors, this

prototype worked well enough and the problem of inadvertently actuating the tactile switch

between the strips was substantially reduced. One thing that all the prototypes had in



4 Discussion 45

common is that they were all much too big to be attached to any wind controllers or the

like. This problem prevented the author from organizing a study to test the effectiveness in

a musical application. Miniaturization of the prototype is certainly possible. Using surface

mount parts to replace the breadboards would make the biggest difference. Finally, as

was mentioned at the beginning, one of the important goals of this project was to create

an input device that can be operated without having to actually look at it during input.

To use a typing analogy, the author wanted to give the user the ability to “touch type”

regardless of the application. This is potentially a very useful feature in music because the

thumb position on many woodwind instruments, for example, is not visible to the eye. You

would never see a large cluster of thumb actuated buttons if the user could not see them.

With no visual feedback this would be impractical. This input device is then a possible

solution to the problem where lots of different choices are desirable but no visual feedback

is available.
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4.2 Musical Applications

As mentioned in the Background, the ability to make dozens of different discrete selec-

tions can be very useful in increasing expressiveness during a live performance. In some

instruments, like wind controllers, the thumb plays a central role in changing parameters,

because it is not directly in playing notes, which are done by the fingers. In this section

we will describe the most relevant musical instruments mentioned in the Background and

discuss the effectiveness of their thumb control scheme in light of the final prototype.

4.2.1 Example of a New Performance Technique for Gestural Controllers

In commercial wind controllers like Yamaha’s WX5 [25], and Akai [1], changing program

numbers, or effects can be quite a complicated procedure that requires the musician to

actually stop playing the instrument in order to make the desired change. Assuming that

the final prototype can be miniaturized enough to fit on a wind controller, it could provide

an improvement on Yamaha’s or Akai’s technique. The following will describe a possible

solution using the final prototype.

As was already described in great detail in the final prototype has two touch sensitive

strips and a switch. In this particular musical application, actuating the switch toggles

between two modes: Program Change Mode, and Effects Mode. Two LEDs, red and green,

could be placed in a visible position on the instrument to notify the musician what mode

the instrument is currently in.

Making Program changes only involves one step and will be explained first. Each of

the 27 different choices is mapped to a program number. In Program Change Mode, the

musician would simply make the desired choice and the program number would change

immediately.
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Fig. 4.1 New performance technique for one-thumb input.

The Effects Mode is different than the Program Change Mode because giving the musi-

cian the ability to change effects parameters in real-time during a performance is preferred.

Each of the 27 different choices are mapped to effects. The procedure would look as follows:

1) The musician selects one of the 27 choices in Effects Mode. In other words, there could

be up to 27 different effects mapped to the choices. 2) The choice would quickly be rec-

ognized by the input device. We will designate this as the “end of the stroke”. Instead of

lifting the thumb off the input device, the musician’s thumb would remain in contact with

the strip(s). 3) The thumb now controls a predetermined parameter of the effect selected

in the previous step. In this implementation it does not matter what strip is being touched.

Only the relative location of the thumb with respect to the “end of the stroke” is what

matters. If the thumb remains in the “end of the stroke” position, then the parameter will

not change, but remain the same. If however, the thumb moves up the slider(s), then the

parameter will increase. Similarly, if the thumb moves down from the “end of the stroke”,

then the parameter will decrease. These changes are relative to the previous value of the

parameter. Therefore, the strips would have to be considerably longer than the longest

stroke, perhaps twice as long, in order to give the musician room to control the effect pa-

rameter in either direction at the “end of the stroke”. For example figure 4.1 shows an

example of this. The black arrow represents the same choice as in the third row of the

first column in figure 3.18 which is mapped to a particular effect. The tip of the black

arrow is the “end of the stroke” meaning the choice was recognized and the parameter of

the effect mapped to that choice can now be increased or decreased. We will assume that
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moving to the right increments the parameter, and moving to the left decrements it. The

grey arrows represent these two possibilities. If the thumb would continue along the path

of the grey arrow pointing right, then the parameter would increase. Moving the thumb

along the path of the grey arrow pointing left would decrease the parameter. The amount

that the parameter is increased or decreased depends on the length of the stroke. As one

can see, the strips had to be lengthened relative to allow for the thumb to move in either

direction without running out of room.

Just like in the other figures, the tail represents the starting position when the thumb

first makes contact. Once the stroke is recognized the effect that is mapped to this stroke

is selected, and the musician can now move up or down, represented by the dotted line,

from “end of the stroke” position to increase or decrease the effect parameter respectively.

4.2.2 Application: The Pipe

As was described in the Background chapter, The Pipe simply uses a rotary potentiometer

that scrolls through MIDI program change numbers to make voice changes. One problem

with this technique is that it you cannot “jump” to a desired number. Instead, you would

likely have to scroll through several program numbers before reaching the desired one.

Another problem is that the rotary potentiometer does not give any tactile feedback, so

the musician would not know what voice has been selected unless it is actually played. Even

with some kind of visual feedback, for example displaying the current program number on a

computer screen, the musician would still need to take great care to make sure he/she does

not overshoot the desired program number. This could be quite distracting if the musician

is in the middle of a difficult musical passage. Scavone [20] acknowledges that it was very

inconvenient to use the potentiometers and suggested that using a scrolling wheel would be

more ergonomic. However, this would not resolve the lack of both visual and a scroll wheel

with indents would not add enough in terms of tactile feedback. The technique mentioned

in the previous section would solve both the visual and tactile feedback problem, and give

the musician the ability to “jump” to any program change desired with a single stroke of

the finger, which would be both faster and require less concentration and effort.
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4.2.3 Application: Bento-Box

Originally, the Bento-Box used thumb actuated sliders for the thumb to control the key,

scale, and chords. In each case, the technique would involve moving the slider to the desired

position and then activating this new setting by pushing a button. In other words, the travel

of the slide potentiometer would be subdivided into different sections, each of which would

be mapped to a particular setting. For example, if the current scale setting was the major

scale, then changing it to a minor scale would require the musician move the slider to the

minor scale position and then actuate the button. Only after actuating the button would

the change become the current setting. This technique also has several problems. In theory,

the musician could prepare for the scale change by moving the slider into the desired position

well before it is needed and then pushing the button to make that selection the current

one. At first glance, this does not seem like something a musician would want to do every

time the melody changes. Furthermore, putting the slide potentiometer in the right position

while playing, would probably be too much of a distraction. In fact, Hatanaka [9] abandons

the idea completely and decides to use the sliders to change effects parameters instead. But

using slide potentiometers does not seem like an ideal choice for this kind of application

either. For one, the thumb does not move in a straight line, and slide potentiometers might

have too much friction. The technique for controlling effects parameters described in the

previous section might offer a solution. The strips of the prototype could be curved like

some of Hatanaka [9]’s more ergonomic early design concepts.

4.2.4 Application: Yamaha and Akai Wind Controllers

Both the Yamaha [25] and Akai [1] have similar solutions for making program changes.

Unfortunately, in either case the musician needs to stop playing musical notes and change

the mode of the instrument in order to make the desired program number changes. In

the case of the WX5 [25], the musician would first need to actuate a special key with the

right thumb to change the mode from playing to program change, and then use two of the

note playing keys controlled by the fingers of the left hand to increment or decrement the

program number. Another technique would involve using the playing keys for numeric entry.

Ten of the note playing keys would be mapped to the digits from 0 to 9, and the program

number would be entered directly. The Akai [1] technique for incrementing/decrementing

the program numbers is almost identical except it does not use the playing keys. However,
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the second Akai [1] technique uses the playing keys, but it does not use them for numeric

entry. Instead, each key is mapped to a particular predetermined program change number.

Unlike the Yamaha [25] model, the Akai [1] can control effect parameters right on the

instrument. Again, the musician cannot play the instrument when making effects changes.

The procedure is very complicated and involves pressing the two buttons then, depending on

which effect is desired, the musician needs to go through a procedure of releasing one of the

buttons, pressing another, waiting for the desired effect to be displayed and then releasing

all the buttons. Only then can the effect parameter be incremented or decremented, which

clearly can take several seconds if not tens of seconds. Using the prototype technique

described above would make it possible to change program numbers or effects parameters

with a single stroke of the thumb. This would probably be a much better solution making

it both easier and faster to make these types of changes during a live performance.
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4.3 Text Entry Applications

As mobile computers have gotten progressively smaller and more powerful, a suitable in-

terface for word processing has become necessary. In this section the best prototype’s

application in text entry will be discussed. The best prototype will be compared with

other common text entry methods currently in use such as the cell phone keypad and the

miniature qwerty keyboard. The shortcomings of these commercially available input meth-

ods will be described and whether or not the features of the best prototype can possibly

solve these problems.

Table 4.1 will be used to focus the discussion on the important features of each input

device. The first column describes the input method and the second column labeled ‘Foot-

print’ describes how many times bigger the different input devices are compared to the cell

phone keypad which is the smallest. The third column labeled ‘Keys’ represents the total

number of keys on a typical device. The prototype does not have any keys, but it does

have three regions namely left, middle and right, so the value for ‘Keys’ in this case would

be 3. Perhaps the most significant column is the one labeled ‘Cluster’. When typing, the

digits (fingers and thumbs) divide up the keyboard into groups or clusters. Each digit is

responsible for actuating the keys in its own cluster [15]. The numbers in the ‘Cluster’

column are calculated by taking the number of keys that are most used during regular

word processing and dividing it by the number of digits used in typing. The fourth column

labeled ‘Touch typing’ describes whether or not the user can touch type with the input

device. Finally, the last row labeled ‘One-handed’ describes whether or not the user can

type comfortably with just one hand. Each input device will be analyzed individually in

the next subsections.

Input Method Footprint Keys Cluster Touch Type One-handed

Laptop 20 48 6 Yes No
Keypad 1 12 6 No Yes
Mini Qwerty 2 34 17 No No
Prototype 1 3 3 Yes Yes

Table 4.1 Text Entry Comparison.



4 Discussion 52

4.3.1 Laptop Keyboard

One of the most common mobile computers is the laptop. The laptop keyboard layout is

practically identical to the computer qwerty keyboard. This gives laptop users the ability

to touch type just as fast and efficiently on their laptops as they do on their computers. A

‘Footprint’ of 20 times the size of a cell phone keypad is a rough estimate. If we take the

area below the keys, the Footprint could be closer to 30. There are usually close to 80 keys

on a laptop keyboard. However, it was determined that there are approximately 48 keys

used in text editing: 36 alphanumeric characters, and twelve others including punctuation,

Shift, Enter, and the arrow the keys. The cluster value of 6 was arrived at by dividing the

48 keys by 8 fingers since both thumbs are normally only used to press the space bar, and

were not used in the calculation. The low cluster value is the reason touch typing is so fast

and efficient on a laptop keyboard. And if we only took the alphanumeric characters into

account the cluster value would be even lower. In practice, the index fingers control 8 keys

each, while the other fingers control 4 each. An experienced touch typist has no trouble

locating and hitting a particular key in a particular cluster. This makes touch typing on a

laptop keyboard fast and efficient [15]. However, the laptop’s large size and weight do not

make it a convenient solution for mobile computing.

4.3.2 Cell Phone Keypad

Cell phones are by far the most common handheld devices today. Unlike the laptop, the

cell phone is small enough to carry on one’s person. The relatively small number of keys

means that the Footprint is one of the smallest in Table 4.1. The cell phone keypad was

designed to be used with a single thumb. However, two thumbs are normally used in text

entry. Although the cluster value is the same as the laptop, the small keys and the fact

that three or four letters are grouped on each key makes it practically impossible to touch

type. The keypad is really only suitable for sending very short text messages [5] [14] [7].

4.3.3 Mini Qwerty Keyboard

A third mobile device, the handheld computer, attempts to bridge the gap between cell

phone and laptop. A miniature version of the qwerty keyboard is crammed onto the hand

held (figure 2.10). Typing is done by both thumbs while gripping the device. The space

available on a handheld computer is very limited. A little less than half the space is usually



4 Discussion 53

Fig. 4.2 The iPhone QWERTY software keyboard.

taken up by the keyboard, which results in a smaller display size (figure 2.10). Other related

devices, like the iPhone (figure 4.2), use a similar approach, but instead of using actual

keys, display an image of the keyboard on a touch screen. Although these keyboards, known

as soft keyboards, do not have the tactile feedback of physical keys, they can increase the

display size by disappearing when they are no longer necessary. Also, the users could have

the option of picking which soft keyboard configuration or layout they prefer, or toggling

between different sets of keys, which is obviously not possible with a real keyboard [14].

The cluster value was calculated by dividing the number of keys on a typical miniature

qwerty keyboard, namely 34, by 2 thumbs. In other words, the keyboard is divided into a

left side and a right side. Each thumb is responsible for 17 keys in its cluster. The very

high cluster value means that each thumb has to locate and actuate one small target key

among 17 keys in the cluster. This makes regular typing more difficult and touch typing

impossible.
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4.3.4 The Final Prototype

All the text entry methods described above make an assumption that the keypad is the

de facto standard for any mobile text entry input device. Buttons are arguably the most

important innovation in human-machine interfaces. Nonetheless, buttons need to be a

certain size in order to be usable by the general public and there is a limited number

that can be crammed onto a cell phone. The prototype in this paper suggests that there

is potential for exploring interfaces for the thumb other than the keypad. Potentially

having 54 different choices (figure 3.18) is more than enough for text editing as they would

include all the alphanumeric characters, punctuation, and special keys, like Tab for example,

used when writing documents. Of course, the assumption is that the prototype could be

miniaturized enough to fit on a cell phone, but it is not hard to imagine replacing the

keypad with two touch sensitive strips. Relying on small keys for mobile text entry does

not look like it could ever make touch typing possible. The concept of this prototype might

be a more likely avenue for developing a suitable touch typing input device for handheld

devices.
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Chapter 5

Conclusions and Future Work

This chapter summarizes the work presented in this thesis, offers some conclusions, and

discusses possible design directions this research will take in the future

5.1 Conclusions

A one-thumb input device which has a very small footprint and allows the user to make

dozens of choices without the need to look at the input device does not exist in commercial

products. However, such a device would be very useful in many applications including

mobile computing and music. The goal of this thesis was to explore new designs that could

achieve this.

Several of the current techniques for thumb control in music instruments were surveyed.

In most cases, the thumb was simply used to actuate an FSR in order to control certain

continuous musical parameters like volume or timbre. However, in some cases the thumb

was used for more sophisticated purposes like making program number changes or selecting

and editing effect parameters. The most popular thumb technique for entering text on a

mobile device was also described.

All these different musical and typing techniques were found to be inadequate in some

respect and the author set out to create a novel input device. The first step in the design

process was analyzing the movements of the thumb and categorizing them. There were three

types of thumb movements observed namely: pushing states, touching states, and lateral

stroke states. The combination of these different states served as the inspiration for the

various designs. The first and second design used the idea of using combinations of pushing
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states and touching states and comprised a joystick and switches. The design was flawed

because it turned out that pushing states and touching states were not as independent as

was assumed. On the other hand, touching states and lateral stroke states were shown to be

independent. The third, fourth and fifth prototypes were based on this concept and all used

two touch sensitive strips in their design. However, the touch sensitive strips used in the the

third and fourth prototypes were inadequate because they required substantial downward

pressure to properly track the thumb’s movement making the prototypes too difficult to

use. This problem was solved in the fifth and final prototype by using capacitive sensors

instead of pressure sensors for the strips.

In the discussion, one-thumb input techniques used in wind controllers or for text entry

were analyzed. The current text entry techniques were assessed as either too tedious,

like T9 and multitap, or requiring too much concentration, like the crammed miniature

qwerty keyboard. In musical gestural controllers, the sensors actuated by the thumb were

usually buttons or potentiometers. The thumb was used to control a variety of parameters

including: making program number changes, changing the key, controlling effects, to name

a few. However, the solution was not ideal in any of these cases because either the musician

had to stop playing notes to make the changes, or making the changes was to distracting

or difficult. The final prototype was presented as a possible solution in wind controllers

and text entry on mobile devices.

This project has given the author much more insight into input devices and has shown

that trying to come up with a one-thumb input technique that is based on buttons might

be a flawed approach. It is difficult to imagine exactly how one would be able to touch

type with dozens of buttons and only one thumb. This thesis suggests that it might be a

good idea to step back and rethink the one-thumb design paradigm.

5.2 Future Work

Although the final prototype worked well, there are several major improvements necessary

to truly be able to evaluate it’s effectiveness as a one-thumb input device. For one, the

final prototype was far too large. Using surface mount components on a custom printed

circuit boards would decrease the size of the electronics significantly. Printed circuit boards

could also be used for the actual touch sensitive strips. In fact, if multi-layer boards are

employed, the electronic components and the strips could be put on a single board.
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The strips would also need better resolution. Only three capacitive sensors were used

per strip. Enough resolution for this application could be achieved with five sensors per

strip. This would give ample resolution to distinguish between left, middle, and right thumb

positions.

Finally, the input device would need to be properly evaluated for both music and text

entry applications. In the case of text entry, a usability study comparing the prototype

to cell phones and blackberry type devices could be done. In the case of music, the input

device could be attached to a wind controller and musicians could be surveyed on their

opinion of the input device.
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