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Abstract

This thesis presents a theoretical and experimental study of the nonlinear behaviour of

analog synthesizers’ effects. The goal of this thesis is to evaluate and complete current

research on nonlinear system modelling, both in and out of the field of music technology.

The cases of single-input and multiple-input effects are considered.

We first present an electronic analysis of the circuits of common examples of analog

effects such as Moog’s lowpass filter and Bode’s ring modulator, extracting the equations

of each system. We then discuss the results of experiments made on these systems in order

to extract qualitative information about the distortion found in the system input-output

relationship.

Secondly, we look at the literature for methods used to model single-input nonlinear

systems, and we investigate the opportunities to extend these techniques to multi-input

systems. We focus on two different modelling approaches. The black-box approach seeks

to model the input-output transfer function of the system as closely as possible without any

particular assumption on the system. The circuit modelling approach uses the knowledge

of electronic component behaviour to extract a transfer function from the known circuit of

the system. The results of both approaches are compared to our experiments in order to

evaluate their accuracy, identify flaws and, when possible, suggest potential improvements

of the methods.
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Résumé

Cette thèse présente une étude théorique et expérimentale du comportement nonlinéaire des

effets de synthétiseurs analogiques. Elle vise à évaluer et compléter les recherches actuelles

sur la modélisation des systèmes non-linéaires, à la fois dans le domaine de la technologie

de la musique et en dehors. Les cas des effets à une ou plusieurs entrées sont examinés.

Pour ce faire, nous présentons d’abord une analyse électronique des circuits de plusieurs

exemples usuels d’effets analogiques tels que le filtre passe-bas de Moog ou le modulateur en

anneau de Bode. Les équations régissant chaque système en sont dérivées. Nous discutons

ensuite le résultat d’expériences menées sur ces systèmes pour extraire une caractérisation

qualitative de la distorsion présente dans le rapport entrée-sortie du système.

Dans un second temps, nous examinons les méthodes de modélisation des systèmes

non-linéaires à une entrée trouvées dans la littérature, et nous explorons les possibilités

d’extension de ces techniques aux systèmes à plusieurs entrées. Deux approches de modélisation

sont abordées. L’approche bôıte noire vise à modéliser la fonction de transfert entrée-

sortie du système aussi fidèlement que possible sans hypothèse sur la structure du système.

L’approche de la modélisation du circuit utilise quant à elle la connaissance du comporte-

ment des composants électroniques pour extraire une fonction de transfert à partir du

circuit (connu) du système. Les résultats associés aux deux approches sont comparés à nos

expériences pour évaluer leur performance, et identifier des lacunes et, quand c’est possible,

des opportunités d’amélioration de ces méthodes.
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Chapter 1

Introduction

In the last decade, virtual analog synthesis has become a recurrent topic in computer music

research. Both the popularity of analog synthesizers and the increasing computational

power of modern computers have made it possible to accurately reconstruct the very typical

sound of electronic audio effects.

The motivation of such research lies in the artistic desire of a generation of composers

and musicians to access the particular features or sounds that were characteristic of these

vintage devices. However, the scarce availability of this material and the disappearance of

manufacturers, combined with their intrinsic disadvantages, such as cost or use of obsolete

components, make the application of original effects often impractical and/or impossible:

thus, the preservation of the sound and their reproduction on modern platforms and, in

particular, computers.

This thesis comes aims to address these concerns by attempting to unify current ap-

proaches to the reproduction of vintage analog sound using electronic effects.

1.1 Project overview

This research project aims to identify and characterize the sources of nonlinear behaviour in

electronic synthesizers’ effects, and then to evaluate the opportunities to use various existing

nonlinear modelling approaches to integrate properly these behaviours in simulating these

effects.

The main focus of this thesis will be on one-input/one-output systems due to the richer

literature on such systems, especially in the domain of audio and electronic music. However,
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we will also study the possibilities to extend our observations and conclusions to the case

of multi-input systems.

The comparison of the different modelling approaches will in particular look at the dif-

ference of performance between methods with different levels of information on the system.

1.2 Analog synthesis history

The invention of modular analog synthesizers was a major breakthrough in the field of

electronic music, providing performers with a powerful medium to create a variety of new

sounds without the need of specific knowledge in electronics or computers, while using fa-

miliar forms and features. Following the work of precursors such as H. Le Caine and its

Electronic Sackbut (Young 1989), three men independently invented analog synthesizers in

1964: R. Moog, P. Ketoff and D. Buchla (Chadabe 2000). The first Moog’s model com-

prised of two voltage-controlled oscillators (VCO) and his now famous voltage-controlled

filter (VCF). These new instruments quickly met commercial viability, becoming an essen-

tial element in electronic music production. The general structure of analog synthesizers

has stayed quite the same since then, based on a modular architecture with subsystems

performing specific tasks, such as oscillators, filters, noise generators, and amplifiers. The

difference between the devices is in the internal circuit design of these modules developed

by manufacturers.

Synthesis software along with cheaper, simpler and more compact digital synthesizers,

where signal generation and processing is performed by digital processors, and then syn-

thesis software have progressively replaced earlier analog synthesizers as sound synthesis

platforms during the 1980’s and the 1990’s. However, some users were not satisfied with

these new devices since they were deemed to sound less “warm” due in part to the absence

of the nonlinearities introduced by analog circuits and that is why systems such as the

Moog ladder filter remained very popular in the electronic music community.

This fact led, on the one hand, to the continuation of analog synthesizer manufacturing

on a smaller scale, and on the other hand, to the invention of virtual analog synthesis.

In a similar way as acoustic instrument modelling is made, virtual analog devices try to

emulate the behaviour of analog synthesizers. Two issues have been identified in this

modelling process (Välimäki and Huovilainen 2006). Concerning the signal sources, it is

necessary to deal with the presence of aliasing due to the sampling of fast time-varying
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signals, which may contain infinitely high-frequency components. Concerning the effects,

nonlinear behaviour of the electronic circuits has to be taken into account. This thesis will

focus on the latter.

1.3 Analog synthesizers effects

Voltage-controlled filters Explored as early as the 1940s by pioneers such as H. Le

Caine (Young 1989), the voltage-controlled filter (VCF) quickly became a basic component

of electronic sound producing devices, and in particular of modular synthesizers. The design

of this effect varies from one device to another.

The Moog ladder filter The Moog ladder filter is probably the most famous analog

effect ever produced. Patented in the 1969 (Moog 1969), this filter has appeared on most

of the commercial Moog synthesizers. It has also been emulated on numerous digital or

computer platforms due to its popularity in the music community.

Ring modulators The ring modulator was used as early as the 1930s for communication

applications (Davies 1976). Its introduction in electronic music started in the mid-1950s

as part of two well-known devices: the vocoder and the frequency shifter. Then, it was

popularized as an independent effect in pieces by Stockhausen (Stockhausen 1967). First

designs of ring modulators had diodes in switching mode what made them useless for sound

modifications due to the very harsh sounds they produced (Bode 1984). However, the

introduction of new germanium diodes and the use of the diode circuits in the “square law

region” of the diodes (Fig. 1.1) allowed the use of ring modulators as four-quadrant signal

multipliers that proved to be musically interesting. Bode developed his own multiplier ring

modulator in 1959-60, later included as an effect in the Moog modular synthesizer (Bode

1961, 1967, 1984).

1.4 System description

We define here the quantities that will appear in the mathematical system descriptions and

in the models developed later in this thesis.
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(a) (b)

Fig. 1.1 Ring modulation using (a) germanium — quadratic mode — or (b)
silicon diodes — switching mode — (after Bode 1984)

Time The time is denoted by the variable t. The sample of a signal is identified with

the variable n, with the convention that the sample with the index n = 0 occurred at time

t = 0.

Inputs and Outputs Since the systems studied here may have multiple input signals

(x1,x2,...,xn) considered as being infinitely-differentiable bounded functions of the time,

the inputs can be denoted using the vector X = [x1 . . . xn]
T . This thesis deals only with

single-output systems so the output is simply denoted by the function of time y.

Functionals The behaviour of a system is described by a functional denoted F . Func-

tionals are functions of functions, since here every point of the output may depend on the

input signals as a whole. Then, F transforms input functions in another function. The

input/output relationship is expressed by

y(t) = F [t, X ](t) (1.1)

Time-invariance In this thesis, as in most of the reviewed literature, we deal only with

time-invariant systems, which means that the behaviour of the system under study is

independent of the choice of the time origin. Mathematically, if we describe the behaviour

of the system using the functional F that transforms the input X into the output Y , the

time-invariance means that this functional does not depend explicitly on the time variable
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t (even if, of course, inputs are time-varying signals):

y(t) = F [t, X ](t) = F [X ](t) (1.2)

In this thesis, we assume that the systems are time-invariant, which leads us to the

following hypotheses:

• In the case of electronic systems, it is well-known that the behaviour of electronic

components can vary depending on their temperature (Sedra and Smith 1997). Here

we consider the systems as being at constant usual temperature (≈ 25◦C) for mod-

elling considerations;

• The control parameters of the systems can vary in time. However, we assume here that

they are not varying, or varying slowly enough so that the system can be considered

as being in a quasi-time-invariant state at all times.

Causality The common physical assumption of causality is valid here as well. It means

that the system functional F depends only on the past and the present of the inputs (ie.

X(s) for s ≤ t).

1.5 Nonlinear analysis

Most of the physical systems are actually nonlinear. The use of linear theory in science

is usually made possible in cases where the influence of nonlinearities is negligible. For

example, this is the case for linear acoustics, used to simulate acoustic waves in rooms.

However these approximations are sometimes insufficient to characterize physical systems

in a satisfactory way. In such cases, the use of nonlinear analysis is necessary to achieve a

proper description of the behaviour of the system.

The simulation and the optimization of linear systems is a field mastered in mathematics

and physics. In signal processing, several methods have been drawn to determine the

characteristics of any linear systems that one can represent in Fourier analysis either as an

impulse response or as a transfer function (which is equal to the Fourier transform of the

impulse response).
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On the contrary, the identification of nonlinear systems is an ongoing field of research.

This research involves the definition of appropriate nonlinear models as well as the de-

velopment of identification techniques in order to parametrize these models from existing

systems.

Nonlinear models Generic models for nonlinear systems were first developed from the

work of Volterra in 1887 (Volterra 1930) on the mathematical theory of analytic function-

als. His theory is an extension of Taylor series, which considered memory effects, and is

nowadays called the Volterra series. However, models based on this expansion are not often

used both because of their complexity and of the number of parameters needed to describe

strongly nonlinear systems, requiring too much computation power. Wiener was one of

the first to specifically study the problem of parameter estimation for nonlinear systems

(Wiener 1958) in the 1950’s. He simplified the approach of the Volterra series by cascading

a memoryless nonlinear block and a memory linear block. Many other models (Bendat

1998; Chang and Luus 1971; Chen and Billings 1989; Greblicki 1997; Sorenson 1985) have

been studied in various research areas (Giannakis and Serpedin 2001) since then, focusing

on simplifying and adapting different frameworks to build relevant representations with

fewer parameters to compute.

Model identification While the parametrization of linear systems is relatively easy, the

extraction of the numerous parameters of a nonlinear model from measurement on the

systems can be difficult due both to the necessity of separating the response of the different

nonlinear elements used in modelling (e.g., the different powers of a polynomial expansion)

and to the extraction of their respective parameters. This fact explains why numerous

techniques are based on noise excitation of the systems, allowing extraction of the different

parameters through decorrelation techniques.

1.6 Distortion characterization

When using synthesizers, the audio effects are often used with oscillators that produce har-

monic signals (e.g., sinusoid, sawtooth, square). For this reason, distortion in audio is often

characterized relatively to the nonlinearities related to signals with distinct components.
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Harmonic distortion This distortion is the one observed when a system is excited by

a single-component signal at frequency f . In the case of nonlinearities, we observe the

presence of harmonic components in the system output (e.g., components at frequency 2f ,

3f , 4f ,...).

Total harmonic distortion A common way to measure distortion in a system is called

Total Harmonic Distortion (THD). In the case of harmonic distortion, it measures the

relative power between the component originally present in the signal and the total power

of the harmonics introduced by the system nonlinearities. If we denote P (f) the power of

the signal component at frequency f , this quantity is given by:

THD(f) =

+∞
∑

n=2

P (nf)

P (f)
(1.3)

As we can see, this quantity depends on the frequency of the component. In many

systems, we also observe a dependence of that quantity on the amplitude (or the power) of

that component.

Intermodulation distortion The harmonic distortion can be insufficient to characterize

correctly the behaviour of a nonlinear system in audio since input signals can consist

of several components and/or several signals can be involved (multi-input effects). The

distortion is observed at non-harmonic frequencies when the system is excited by two

components f1 and f2. In that case, we usually observe the presence of intermodulation

components in the system output (e.g., components at frequency f1 − f2, f1 + f2, 2f1 − f2,

f1 + 2f2,...)

Distortion order As we will see in Chapter 4, nonlinear models can always be ex-

pressed as an infinite sum of polynomials of the signal samples. A polynomial of order n

is always related to the harmonic distortion at frequencies up to nf . In the case of two

single-component input signals, a polynomial of order (n,m) (ie. xnym) relates to the in-

termodulation distortion at frequency nf1 +mf2. Thus, to simplify, we refer to distortion

components in the output signal with such polynomial order (e.g., 3f1 is the 3rd-order

distortion, and 2f1 + f2 is the (2,1)-order distortion).
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1.7 Single-input and multiple-input nonlinear models

System F

Additional parameters

Fig. 1.2 Structure of a single-input/single-output (SISO) system1

System F

Additional parameters

...

Fig. 1.3 Structure of a multi-input/single-output (MISO) system

The most common case of audio systems encountered in literature are single-input/single-

output (SISO) systems, with the possibility of additional parameters (Fig. 1.2). As a con-

sequence, most of the research on nonlinear models in audio applications focuses on SISO

structures. In analog synthesizers, several examples of SISO effects can be found, such

as amplifiers, filters, reverberators or envelope followers. In this thesis, we also look at

multiple-input configuration (Fig. 1.3). If this configuration is less present in the literature

about electronics, it has been studied in domains such as telecommunications (e.g., fre-

quency conversion (Rice 1973)) or biomedical engineering (e.g., binocular vision modelling

(Hall and Hall 1977)).

1Convention for system structure drawing is based on (Durr 1976)



1 Introduction 9

1.8 Thesis’ layout

This thesis is organized as follows. First, we look at the effects’ circuits and the different

sources of nonlinearities that can be found analytically in Chapter 2. These sources are

observed experimentally in Chapter 3. Then, we explore the different approaches in non-

linear modelling as well as parameter extraction methods in Chapters 4 and 5. Finally, we

apply these techniques to the studied systems and compare the behaviour of the models to

the measurements made earlier in Chapter 6.
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Chapter 2

Synthesizer circuits

As mentioned in the introduction, this thesis focuses on the study of nonlinear circuits

present in electronic synthesizers. Many electronic effects have been developed since the

1950’s. Due to the presence of nonlinear components in the circuits, such as diodes and

transistors, the behaviour of these synthesizers was nonlinear. This gave their sound a

colouration particular to each device. In this section, we review the various designs en-

countered for two different and popular effects: the lowpass filter as a weakly nonlinear

system, and the ring modulator as a strongly nonlinear system.

The different characteristics of the electronic components involved in the design of these

effects are presented in Appendix A.

2.1 Lowpass filters in synthesizers

The lowpass filter is one of the most common effects on electronic synthesizer. Its design

varies from one device to another. It is often used as an example of a weakly nonlinear

system, in the sense that its total harmonic distortion (see Section 1.6) is low and does not

involve audible high orders of distortion (usually up to order 5).

2.1.1 Ladder filters

A popular design for lowpass filters is the ladder filter structure first introduced by Robert

Moog. This approach consists of stacking several identical filter stages. The use of

transistor-based filtering stage was patented by Moog in 1969 (Moog 1969) so all sub-
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sequent designs used diodes instead. Examples of such diode-based designs were present

in the Roland TB-303 (Fig. 2.1(a)), Doepfer A-102 (Fig. 2.1(b)), EMS (Figs. 2.1(c) and

2.1(d)), PE Minisonic (Fig. 2.1(e)) and Roland 100 (Fig. 2.1(f)) synthesizers (Stinchcombe

2008).

There have been some studies that investigate these designs. An example is the study

of the EMS VCS3 filter by Fontana (Fontana and Civolani 2010). The design of this filter is

unique in that each filtering stage is not buffered from the next, which differentiates them

from the transistor-based design of Moog (Stinchcombe 2008). This characteristic makes

them harder to study analytically.

2.1.2 Alternative filter designs

Another example of lowpass filter design is the one implemented in Korg synthesizers of

the late 1970’s (e.g., MS-10, MS-20). The popularization of operational transconductance

amplifiers allowed the implementation of active electronic effects such as voltage-controlled

filters. A study of the lowpass filter circuits of the MS-10 and the MS-20 is presented in

Stinchcombe (2006). Later Korg designs also explored circuits using a diode ring as it can

be seen on the Korg MS-50 schematics (Korg 1978).

2.1.3 The Moog ladder filter

The device developed by Moog in the 1960’s is the main example of transistor-based ladder

filter. This famous device has been thoroughly studied in literature (Hélie 2010; Huovilainen

2004; Stilson and Smith 1996) with the purpose of developing always better digital models

reproducing the typical nonlinear effects of this system.

Device The interface of the Moog lowpass filter 904A (1969 model) can be seen on

Fig. B.1. The device has one input, one output and three control inputs to control filter

cutoff through voltage. As explained in Appendix B.1.1, the three control inputs are simply

added to get one single voltage control value.

Filter circuit The Moog filter uses the base-to-emitter resistance of bipolar transistors

to build several RC filter circuits (Huovilainen 2004). The filter consists of four of such

stages (Fig. 2.2), each of which comprising two BJTs and one capacitor (Fig. 2.3). A last
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68n
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Fig. 2.1 Examples of diode-based ladder filters: (a) Roland TB-303, (b)
Doepfer A-102, (c) EMS early version, (d) EMS late version, (e) PE Minisonic,
(f) Roland 100 (after Stinchcombe 2008)
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part is the driving stage (Fig. 2.4) which is connected to the filter input and to the control

circuit, usually modelled as a control current source varying with the cutoff frequency

control parameter of the filter.

Fig. 2.2 Moog filter — Ladder filter circuit

Equations The equations related to the filter stage have been derived in literature (Hélie

2010). We use the notations as displayed in Figs. 2.2 and 2.3.

If we take the usual assumption that the base current of all transistors in the circuit is

negligible (IB << IE), each stage follows:

2C
dVn

dt
= −Ic

(

tanh
Vn

2VT
− tanh

Vn−1

2VT

)

(2.1)

By using the notation (Hélie 2010), vn = Vn/2VT and ω = Ic/4CVT , the system is driven
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Fig. 2.3 Moog filter — Filtering stage circuit

Fig. 2.4 Moog filter — Driver stage circuit

by the equations:

1

ω

dvn
dt

+ tanh vn = tanh vn−1 for n = 1, 2, 3, 4 (2.2a)

v0 = vin − 4rv4 (2.2b)

We see that the linearized version of Eq. (2.2a) is given by:

1

ω

dvn
dt

+ vn = vn−1 (2.3)

which corresponds to the equation of a RC filter where the resistance is induced by the

transistors as 4VT/Ic.

The quantity ω/2π represents the cutoff frequency of the linearized filter, r is related

to the resonance profile of the filter and vin is related to the nominal input voltage and the
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input stage gain of the module. Their typical values are then given by (Hélie 2010):

20Hz ≤ ω

2π
≤ 10kHz, 0 ≤ r < 1, |vin| < 5 (2.4)

2.2 Ring modulators

Ring modulator is another example of common module found on most existing synthesizers.

This circuit is ideally supposed to perform a multiplication between the two input signals

known as the modulator m(t) and the carrier c(t):

y(t) = m(t).c(t) (2.5)

We then see that the ring modulator is intrinsically a nonlinear effect. However, in its

ideal behaviour, this nonlinearity should be confined to the (1,1) order. The purpose of the

nonlinear modelling in this case is to evaluate in what existing systems diverge from this

ideal characteristic.

In terms of electronic design two schemes have been implemented using either diodes

or transistors.

2.2.1 Diode-based ring modulator

This design is the first one developed using diodes. It was the one used by Bode (Bode

1984) on the ring modulator embedded in first Moog’s synthesizers.

Circuit As presented in Fig. 2.5 the diode-based ring modulators consist of four ger-

manium diodes and 2 centre-tapped transformers. The carrier signal is the tension uC ,

the modulator signal is uM , and the output signal is uA. Hoffmann-Burchardi simplified

the circuit (Hoffmann-Burchardi 2008) for modelling purpose, using a simple ideal model

for the transformers as shown in Fig. 2.6. The capacitor Cp is introduced to regulate the

model, RM and Ri are source resistances, and RA is the load resistance.
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Fig. 2.5 Diode-based ring modulator (Hoffmann-Burchardi 2008)

Fig. 2.6 Modified diode-based ring modulator (Hoffmann-Burchardi 2008)

Equations Using Kirchoff’s current laws we can extract the five ordinary differential

equations of order 1 (Hoffmann-Burchardi 2008):

C
du1

dt
= i1 −

g(u4)

2
+

g(u5)

2
− g(u6)

2
+

g(u7)

2
− u1 −m(t)

RM
(2.6a)

C
du2

dt
= i2 +

g(u4)

2
− g(u5)

2
− g(u6)

2
+

g(u7)

2
− u2

RA

(2.6b)

Cp
du3

dt
= g(u4) + g(u5)− g(u6)− g(u7)−

u3

Ri

(2.6c)

L
di1
dt

= −u1 (2.6d)

L
di2
dt

= −u2 (2.6e)
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where g is the V-I characteristic of the diodes.

Kirchhoff voltage laws provide 4 more equations:

u4 =
u1

2
− u3 − c(t)− u2

2
(2.7a)

u5 = −u1

2
− u3 − c(t) +

u2

2
(2.7b)

u6 =
u1

2
+ u3 + c(t) +

u2

2
(2.7c)

u7 = −u1

2
+ u3 + c(t)− u2

2
(2.7d)

that completely characterize the system.

2.2.2 Transistor-based ring modulator

This design was introduced later in synthesizers when transistors became more popular and

replaced diodes in electronic circuits. In particular, it corresponds to the ring modulator

embedded in the Korg MS-50 using an RC4200 integrated circuit as can be seen on the

schematics (B.8).

Circuit The circuit consists of three differential amplifier stages (Fig. 2.7) each composed

of two transistors.

Fig. 2.7 Differential transistor-based amplifier stage (Hoffmann-Burchardi
2009)
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Fig. 2.8 Transistor-based ring modulator (Hoffmann-Burchardi 2009)

Equations Using the notations used by Hoffmann-Burchardi (Hoffmann-Burchardi 2009)

the behaviour of the differential amplifier stage is expressed as follows:

IC1(t)− IC2(t) = 2I0 tanh
vx(t)

2Vt
(2.8)

Then the output can be written using the difference of the currents I1 and I2 as a

function of the input voltages vx(t) (carrier) and vy(t) (modulator):

∆I(t) = I1(t)− I2(t) = 2I0 tanh
vx(t)

2Vt

tanh
vy(t)

2Vt

(2.9)

Furthermore, Hoffmann-Burchardi argues that linearizing resistors are commonly used

at the emitter of the transistors Q5 and Q6 such that tanh vy(t)

2Vt
→ vy(t)

2Vt
. Thus the behaviour

of the system can be approximated by:

∆I(t) = I1(t)− I2(t) = 2
vy(t)

2Vt
tanh

vx(t)

2Vt
(2.10)



2 Synthesizer circuits 19

2.3 Circuit asymmetries

2.3.1 Hoffmann-Burchardi’s experiment

Experiment In a recent paper, Hoffmann-Burchardi noticed some unexpected distortion

in the transistor-based ring modulators similar to the one present on the EMS VCS3 ring

modulator and the Doepfer A-114 module (Hoffmann-Burchardi 2009).

In his experiment he applied two sinusoids at 100Hz and 1kHz to a Doepfer A-114.

According to the ideal ring modulator equation (Eq. (2.5)), if one applies two sinusoids at

fm (modulator) and fc (carrier) one should expect two peaks in the output signal spectrum

at fm ± fc assuming the usual convention that fm > fc. While the frequency spectrum of

the output signal (Fig. 2.9) exhibits large peaks at 900Hz (fm − fc) and 1100Hz (fm + fc),

it also has at 100Hz (fc), 200Hz (2fc), 1kHz (fm) and 2kHz (2fm).

In case of the equations given by Hoffmann-Burchardi, we would have either Eq. (2.10)

(circuit with linearizing resistors) and a spectrum with peaks located at fm ± kfc (with k

odd) or Eq. (2.10) (circuit without linearizing resistors) with peaks located at kfm ± lfc (k

and l odds).

Fig. 2.9 Frequency spectrum of the output signal of a Doepfer A-114, ap-
plying two sinusoids at 100Hz and 1kHz (Hoffmann-Burchardi 2009)

Asymmetry hypothesis After these observations, Hoffmann-Burchardi drew the hy-

pothesis that these non-expected peaks in the spectrum were due to asymmetries in the
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behaviour of real circuits. Indeed, all the circuits discussed in this thesis are of symmetri-

cal designs. This symmetry is made on the assumption that the electronic components are

identical and the distribution of currents is balanced between the two symmetrical parts of

the circuit.

Hoffmann-Burchardi tested that hypothesis by considering an unbalanced splitting of

the current between the two branches of the modulator input stage (IC5 and IC6 in Fig. 2.8).

This assumption changes the result found in Eq. (2.10) and leads to the output signal:

∆I(t) = I1(t)− I2(t) = 2
vy(t)

2Vt
tanh

vx(t)

2Vt
+ 2δI tanh

vx(t)

2Vt
(2.11)

where δI is the small amount of current that goes in the left branch instead of the right

one.

In the equation, we see that some of the carrier signal leaks to the output, even in the

absence of a modulator signal. This leakage results in the presence of peaks at kfc (k odd)

in the frequency spectrum of the output signal.

Hoffmann-Burchardi performed a circuit analysis on the ring modulator by slightly

changing the saturation current of each transistor (see transistor’s characteristics in Sec-

tion A.3). The output frequency spectrum of the model as displayed in Fig. 2.10 exhibits

peaks at 100Hz, 1kHz and 2kHz and 3kHz±100Hz. Thus, some of the peaks present on the

measured signal appear on this spectrum. However, the intensities of these peaks are still

inaccurate and major peaks such as the one at 200Hz are still missing.

Hoffmann-Burchardi suggests that the replacement of the ideal current source I0 by

the actual circuitry present on synthesizer’s could be a significant improvement. He also

suspects the presence of leakage currents in the modulator input stage that would add

nonlinearities in the preprocessing of the input. He mentions that the design of the EMS

VCS3 ring modulator is such that a portion of the carrier signal is added to the modulator

signal and vice versa in an attempt to reduce the influence of such leakages.

2.3.2 Asymmetries in symmetric stages

As we saw earlier in this chapter, the effects studied in this thesis are composed of stacked

stages with symmetrical designs (Figs. 2.2 and 2.8).
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Fig. 2.10 Frequency spectrum of the output signal of an unbalanced model
of transistor-based ring modulator, applying two sinusoids at 100Hz and 1kHz
(Hoffmann-Burchardi 2009)

Non-ideal BJT Considering the model of the BJT presented in Appendix A, the main

parameter we can change is the saturation current IS. In this section, we consider the case

where each BJT in the studied circuits has a saturation current equal to kIS where IS is

the reference saturation current of the BJT model and k is a coefficient such that k = 1+ δ

where δ is negligible compared to 1.

Differential amplifier stage This stage is used in the transistor-based ring modulator

(Fig. 2.11) as well as in the driver stage of the Moog filter (Fig. 2.4. It is composed of two

transistors Q1 and Q2 which coefficients are denoted k1 and k2.

If we make the usual assumptions (no base current for each transistor, see Section 2.1.3),

and we use the calculation scheme presented in Hélie (2010), the following equations:

IC1 + IC2 = 2I0 (2.12)

IC1/IC2 = e−vx/VT (2.13)
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Fig. 2.11 Transistor-based differential amplifier (Hoffmann-Burchardi 2009)

are no longer valid. The asymmetries introduce imperfections such that Eq. (2.13) becomes:

IC1 + IC2 = 2I0 (2.14)

IC1/IC2 = k1/k2 e−vx/VT = e−vx/VT+log k1−log k2 (2.15)

which leads to the amplification relation:

∆I = IC1 − IC2 = 2I0
IC1/IC2 − 1

IC1/IC2 + 1
= 2I0 tanh

(

− vx
2VT

+ β

)

(2.16)

where β = 1
2
(log k1 − log k2).

We see that the only modification compared to the ideal relation ∆I = 2I0 tanh
(

− vx
2VT

)

is the shift β in the hyperbolic tangent expression, that introduces even-order distortion in

the stage response.

Filtering stage A similar calculation in the case of the filtering stage used for the Moog

(Fig. 2.3) changes the original relation found in Section 2.1.3:

2C
dVn

dt
= −Ic

[

tanh
Vn

2VT

− tanh
Vn−1

2VT

]

(2.17)

to:

2C
dVn

dt
= −Ic

[

tanh

(

Vn

2VT

+ βn

)

− tanh

(

Vn−1

2VT

+ βn−1

)]

(2.18)

Here again, the presence of the shift coefficients βn introduces even-order harmonics in the

stage response.
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2.4 Summary

The identification of nonlinearities from the characteristics of electronic components in the

main processing unit of the effect can be extracted from the circuit diagrams of exam-

ples presented in this section. However, as shown in the last part, this analysis may be

insufficient to explain all the distortion measured in the output signal.

The experiments that we report in the following section were designed to quantify

nonlinearities in the available systems and, when possible, identify their sources.
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Chapter 3

Experimental study

To study the nonlinearities in the behaviour of analog circuits, we made measurements on

devices available in the Sound Processing and Control Laboratory (Figs. 3.1 and 3.2). In

each one of them, we examined the influence of one specific parameter keeping the other

parameters fixed.

Fig. 3.1 Experimental benchmark (1)

Unless stated otherwise, we assume that the input signal is a sound file sampled at 96kHz

and coded with 24 bits and that the output measurements have the same characteristics.
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Fig. 3.2 Experimental benchmark (2)

3.1 Remarks

Aliasing In this thesis, we are not interested in the influence of aliasing in the analog-to-

digital conversion on the accuracy of the system modelling. Since the Nyquist frequency of

our measurements is 48kHz and that more than 5 to 7 significant orders of nonlinearities

in our systems are not expected, we will limit the range of the fundamental frequency of

harmonic signals (e.g., sinusoids, chirps) to a maximum of 10kHz.

Audio range As electronic systems, the synthesizers’ effects have a specific behaviour at

any given frequency. However, these systems were designed and optimized to work with a

target behaviour in the audio and/or audible frequency range. Thus, we do not examine

the system response for frequencies below 20Hz.

Fundamental frequency range We limit our tests to fundamental frequencies in the

range 50Hz–10kHz. It roughly corresponds to the range of first interest for music pur-

poses. Future work on the system could look at frequencies below and above this range to

study its behaviour on the whole audio range.

AC power source We observed the common influence of the AC power source on the

measured signals. This influence is visible as harmonic peaks related to the fundamental

frequency at 60Hz. This signal is much lower in terms of amplitude than the main com-
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ponent of the signals measured, however, it can be comparable to some of the harmonic

distortion components.

3.2 Experiments on lowpass filters

Since we had access to the circuit board of the Moog 904A lowpass filter, we had the

opportunity to perform measurements both at the outlets and directly on the board of that

filter. These two setups are presented here.

3.2.1 Setup for measurements at the outlets

The setup for input/output measurements at the outlets of the filter follows the scheme

displayed on Fig. 3.3.

Lowpass filterDAC ConverterComputer

Firewire
Acquisition

Card

Fig. 3.3 Experimental setup for measurements at the outlets for lowpass
filters

Signal generator The signal source used for our experiments is a computer generating

a digital signal sampled at 96kHz and coded with 24 bits. This choice allows us to gen-

erate customized signals according to experimental needs. The signals generated through

the computer has also been observed in our experiments as superior in quality to signals

generated by an Agilent 33220A analog signal generators. For example, swept-sine signals

produced by the analog generator contained harmonic components even though at a very

weak power (-90dB). These components were not present in the output of the computer

generated signal and they could interfere with our study of filter harmonic distortion.

Digital-to-analog conversion The digital signal generated by the computer is transmit-

ted through a FireWire connection and then converted into an analog signal using a MOTU
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828 as Digital-to-Analog Converter (DAC). This device is equipped with four outlets with

a 0dB reference at about 4.5V.

Acquisition The acquisition of analog signals is done using a National Instruments NI-

4472 card connected on a PCI bus to a computer equipped with Windows XP and Labview

SignalExpress 2010. This card allows us to measure 8 simultaneous inputs at a sample rate

of 96kHz in the range ±10V and coded with 24 bits.

Control signal To generate the control signal, we use a combination of a digital computer-

generated signal converted by the MOTU and a DC power source. Each of them is con-

nected to a different control outlet of a device if possible (e.g., Moog 904A), or added before

using the analog adder of a Korg MS-50. The control signal is most of the time recorded

simultaneously to the other signals.

3.2.2 Setup for measurements on the circuit board

In case of measurements made directly on the circuit, we use oscilloscope probes that we

plug directly to the circuit, following the scheme displayed on Fig. 3.4.

Lowpass filterDAC ConverterComputer

Firewire
Acquisition

Card

Fig. 3.4 Experimental setup for measurements on the circuit board for low-
pass filters

On-board measurements The probe signals are acquired directly by the acquisition

card described in the previous section.

3.2.3 Cutoff frequency extraction

To extract the cutoff frequency of filters we set the filter with maximal resonance to improve

cutoff localization and then send a swept-sine signal to it. We then perform a spectrogram
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analysis on the input and the output signals using a Blackman window of length 8192. From

the input spectrogram, we locate the instantaneous frequency of the signal and we extract

the magnitude of that component using a quadratic interpolation on the three adjacent bins

around the spectrogram magnitude peak for each window. From the output spectrogram,

we extract the magnitude of the same component. From this, we get a frequency response

curve, the maximum of which gives us the cutoff frequency.

3.2.4 Distortion measurement

The extraction of the power of the distortion harmonics of the signal is also performed

using quadratic interpolation around the peaks of the spectrogram. The power magnitude

of the main component is then subtracted to get the relative magnitude of each order of

distortion for each window.

3.3 Moog filter

3.3.1 Input-output behaviour for a DC input

Context In the case of a linear system, the presence of a DC component in the input is

usually not a concern since this component will be processed independently of the other

components of the signal and can be ignored or removed in a post-processing stage.

This observation does not apply in the case of a nonlinear system. It can even become

critical in particular cases, such as the common example of a system with only nonlinearities

of an odd order. If we take the example of a system where the output y is expressed as a

function of the input x with the relation y = x+x3, we can observe that this system should

have only two output components at frequencies f and 3f when submitted to sinusoidal

input at frequency f . However, the presence of a DC component α (e.g., different ground

voltage levels) will result in the following output:

y(t) = (x+ α) + (x+ α)3

= α + α3 + (3α2 + 1)x+ 3αx2 + x3
(3.1)

We see that this DC component would affect the intensity of the output component at

frequency f creating an even-order component at 2f .



3 Experimental study 29

The purpose of the following experiment is to study how DC components are processed

by the filter and in particular if they are filtered either by the input buffer stage, the output

buffer stage, or even both.

Experiment For this experiment, we sent a series of DC components of various voltages

as input to the Moog filter. The resonance parameter of the filter was set to its minimum

to avoid self-oscillation effects during the experiment. The voltages were measured both

on the board, both at the input of the filter stage (see Appendix B.1.1) and at the output

of the filter. The different set-ups are summarized in Appendix C on Tables C.1 and C.2.

To estimate the DC voltages from the measurements, we take the mean of the signal.

The measurement noise is modelled as zero-mean Gaussian noise. Its power is estimated

from the empirical standard deviation σ of the signal.

Results and discussion The measurements corresponding to the first experiments are

displayed in Fig. 3.5. As we can see, the DC voltage at the input is transmitted to the

input of the filter stage. The voltage at the base pin of the transistors Q7 and Q8 (see

Fig. 3.5(a)) changes linearly with the DC voltage following the relations extracted by linear

regression:

VQ7 = −13.01× 10−3Vin + 3.5613 1− R2 < 0.01% (3.2)

VQ8 = 7.396× 10−3Vin + 3.5595 1− R2 < 0.01% (3.3)

The differential voltage (see Fig. 3.5(b)) is thus given by:

V = −20.41× 10−3Vin + 1.808× 10−3 1− R2 < 0.01% (3.4)

The measurements showed that the input signal of the filtering stage contains very

low noise with σ =0.1mV. One interesting observation is that for a zero-input signal, the

differential voltage at the input of the filtering stage has a DC component.

Concerning the output signal (see Fig. 3.5(c)), we see that the DC component is com-

pletely filtered since the output voltage is flat and presents a very small constant DC value

(∼0.04mV). This is likely introduced by the measuring equipment. The measurement noise

is slightly higher than in the on-board measurement going up to σ =0.6mV.
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(b) Filtering stage input voltage
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(c) Output voltage with ±σ interval

Fig. 3.5 Moog filter — Measured voltages in the case of a DC input

To confirm this observation, we conducted further experiments that examined the ad-

dition of a sinusoidal component to the input signal (Experiment 10-18). The results of

these experiments are identical to those presented earlier since the signal at the input of the

filtering stage was containing the sum of the attenuated input sinusoid and the offset found

in the first experiments. Thus, we conclude that the signal transmitted at the input of the

filtering stage is influenced by the presence of a DC component and that this component

has to be eliminated later.

3.3.2 Cutoff frequency control

Context According to Moog’s documentation, the control of the cutoff frequency of the

filter is controlled exponentially through the control voltage such that an increment of 1V

produces an increment of 1 octave on the cutoff frequency (see Appendix B.1.1). He also

states that the 3 different frequency range positions shift the cutoff frequency range by

2 octaves (so the equivalent of 2V). Yet, Moog does not specify the starting value of the
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cutoff frequency scale, so we cannot say what frequency would give a particular control

voltage.

The purpose of the following experiment is, first, to measure the actual output voltage

of the digital-to-analog converter for a given digital amplitude in the audio file containing

the constant control signal and second, to verify the exponential relationship given by Moog

and to parametrize the starting value for later experiments.

Experiment For this experiment, we sent as input in the Moog filter a series of identical

swept sine signals. Each time, the control voltage was changed with a given increment.

The resonance parameter of the filter was set to its maximum to improve the localization

of the frequency response peak of the filter. The voltage was measured at the output of

the filter. The different set-ups are summarized in Appendix C on Tables C.3 and C.4.

We perform measurements for 2 different positions of the frequency range switch (2nd

and 3rd positions), but we add the corresponding voltage offset (2V) to the control voltage

so that the filter cutoff frequency is theoretically the same according the filter documenta-

tion.

Results and discussion The estimated control voltage sent by the computer through

the MOTU is given in Table 3.1. The estimated magnitude response curves are given in

Fig. 3.6. We see that for the 3 first experiments, the cutoff frequency is not in the span of

the swept-sine signal so we cannot extract it from our measurements.

Exp n◦ 19 20 21 22 23 24 25 26 27
Digital ampl. -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Voltage (V) -3.617 -2.713 -1.809 -0.905 -0.001 0.903 1.806 2.710 3.614

Table 3.1 Measurement of the control voltage coming from the DAC as a
function of the amplitude in the control audio file

According to the filter documentation, the relationship between the control voltage and

the frequency cutoff is exponential. Thus we perform a linear regression (see Fig. 3.7 on the

logarithm of the estimated cutoff frequency as a function of the measured control voltage.

From this, we observe that for the 2nd frequency range position:

log2(fc) = 0.9769Vctrl + 9.422 1−R2 < 0.1% (3.5)
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(a) 2nd frequency range position — Exp. 19 (left)
to Exp. 27 (right)
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(b) 3rd frequency range position — Exp. 28 (left)
to Exp. 36 (right)

Fig. 3.6 Moog filter — Magnitude response of the filter for different control
voltage values

and for the 3rd one:

log2(fc) = 0.9793Vctrl + 11.325 1− R2 < 0.1% (3.6)
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(b) 3rd frequency range position

Fig. 3.7 Moog filter — Cutoff frequency as function of the control voltage

As stated by the documentation, the slope of the relationship between the control

voltage and the logarithm of the cutoff frequency is about 1V per octave. The gap between

the two curves is 1.903V. If we consider the two extreme control voltages given by the

documentation (-9V∼6V), we get the cutoff frequency range given in Table 3.2.

The results also show that the filter gain is similar for both frequency range positions



3 Experimental study 33

Position 2 3
Minimal cutoff frequency 1.547Hz 5.699Hz
Maximal cutoff frequency 39.87kHz 150.6kHz

Table 3.2 Estimated frequency range values for the range switch

(∼-10dB) at low frequencies while they are different at high frequencies (∼-75dB for 2nd

one, ∼-65dB for 3rd one).

3.3.3 Harmonic distortion of the Moog filter

As a preliminary experiment, we looked at the results of experiment 42 to observe the

nonlinearities in the output signal spectrogram. The input and output signal spectrograms

are displayed in Figs. 3.8 and 3.9.

Fig. 3.8 Moog filter — Input signal spectrogram of the experiment 42

As can be seen on the output signal spectrogram, harmonic distortions of orders up to

7 are clearly visible. We also see that the magnitude of the distortion harmonics varies

with the instantaneous frequency of the input signal.
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Fig. 3.9 Moog filter — Output signal spectrogram of the experiment 42

3.3.4 Influence of the frequency cutoff setting on the filter harmonic distortion

Context The filter response could be seen as subject to two contradictory behaviours

when submitted to a single-component signal. On the one hand, the nonlinearities of the

filter create harmonics in the signal. On the other hand, the linear behaviour of the filter

is such that the original component but also its harmonics created by distortion will be

filtered when going through each stage of the ladder filter, thus reducing the distortion

effect since these harmonics are situated closer to or above the cutoff frequency of the

filter.

The purpose of this experiment is to study this phenomenon and to quantify it.

Experiment For this study we use the same measurements we made in Section 3.3.2. We

measure the distortion up to order 7 from the spectrogram analysis of the output signal.

Results and discussion On a single experiment, we can see the difference in the har-

monic distortion depending on the relative location of the component of the signal and the

cutoff frequency of the filter. If we look at Fig. 3.10 where there is no resonance, we can see

that there is a similar behaviour between pairs of distortion (2nd and 3rd, 4th and 5th,...).

For low frequencies, the odd-order distortion is the strongest, while for high frequencies, the

even-order one becomes dominant. Also, if we consider that an audible component has to
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(b) Experiment 38

Fig. 3.10 Moog filter — Relative magnitude of the distortion orders at res-
onance 0 (the cutoff frequency is displayed with a black vertical line)
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(a) Experiment 39
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(b) Experiment 40

Fig. 3.11 Moog filter — Relative magnitude of the distortion orders at res-
onance ∼7 (the cutoff frequency is displayed with a black vertical line)

be above a relative power magnitude of -60dB we see that the sound is richer around fc/4

with 7 audible components, while at high frequencies, the sound contains only 3 audible

components.

If we look at the curves for different frequency cutoff settings (Figs. 3.10(a) and 3.10(b)),

we see that on the logarithmic frequency scale the distortion patterns are translated along

with the cutoff frequency. Thus, up to a point, the behaviour of the system seems to be

independent of that setting.

With an intermediate resonance (Fig. 3.11), the distortion patterns are very similar to

the experiments without resonance, with only minor differences. Thus the behaviour of the

system seems more or less invariant by translation when changing the cutoff frequency on

the logarithmic frequency scale.
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Fig. 3.12 Moog filter — Relative magnitude of the distortion orders at res-
onance 10 (the cutoff frequency is displayed with a black vertical line)

Finally, if we look at the filter behaviour with maximal resonance (Fig. 3.12) we see

that the distortion pattern is much more complex with large variations of the components

depending on the relative location of the component of the signal and the cutoff frequency

of the filter. With this amount of resonance, analog filters are well-known for showing

a phenomenon called self-oscillation, which means that due to the narrow-band strong

amplification around the cutoff frequency, the filter will generate a self-amplified component

at that frequency from very small perturbations (e.g., electronic noise). Here it seems that

each distortion curve displays peaks when the frequency of the distortion order (nf) or

one of its subharmonics (coming either from the input component f or one of its lower

distortion order mf with m < n) falls in the resonance region. However, this general rule

does not explain all the variations of the curves, and it is difficult to extract tendencies

from the distortion of order greater than 3.

The previous remark about the translation invariance of the curves seems to apply

here too, but we see that the curve evolution is much sharper for high cutoff frequencies

(Fig. 3.12(b)) than for low ones (Fig. 3.12(a)).

3.3.5 Influence of the input amplitude on the filter harmonic distortion

Context Nonlinearities are usually very significantly influenced by the amplitude of the

input. If we think about a simple saturation effect such as y(t) = tanh(x(t)), the distor-

tion at the different orders (see Table 3.3) varies visibly. The presence of the hyperbolic

tangent function in the equations of the Moog filter (see Eq. (2.2)) implies that a similar
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phenomenon will arise in this system.

Input ampl. 1st order 3rd order 5th order 7th order

0.01
10.0e-3 83.3e-9 0.833e-12 7.79e-18
0dB -102dB -202dB -302dB

0.1
0.100 0.829e-3 0.827e-6 0.835e-9
0dB -62dB -122dB -182dB

1
0.812 54.2e-3 4.52e-3 0.382e-3
0dB -24dB -45dB -67dB

Table 3.3 Amplitudes and relative magnitudes of odd-order distortion of a
nonlinear system y(t) = tanh(x(t))

The purpose of this experiment is to observe this distortion effect and to quantify it.

Experiment For this experiment (Experiment 43), we sent a series of sinusoidal signals

as input in the Moog filter. These signals had an amplitude that varyied exponentially.

The sinusoids had different frequencies below and above the cutoff frequency of the filter.

The set-up is summarized on Tables C.5 and C.6.

The voltages were measured at the input, at the output, at the input of the filter stage,

and at the computer-driven control input.

Results and discussion As expected, we observe an increasing distortion in the output

the signal while the amplitude of the signal is rising. Furthermore, this increase seems to

be linearly dependent on the gain of the input signal (in the log-log scale).

As we observed in the experiments of Section 3.3.4, it seems to be separate tendencies

for even and odd-order distortions, the latter increase more than the former

3.4 Experiments on ring modulators

The setup for input/output measurements on the ring modulators follows the scheme dis-

played in Fig. 3.14.

The equipment used is mostly similar to the one already detailed in Section 3.2 for

the experiments on the lowpass filters. The main change is that the control channel is
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Fig. 3.13 Moog 904A — Variation of the distortion orders for different input
amplitudes
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Fig. 3.14 Experimental setup for measurements at the outlets for ring mod-
ulators

replaced by the second input channel. The limited number of outputs in the digital-

to-analog converter does not allow us to record this second input yet, since we perform

symmetrical experiments, we will assume that the signal measured on the first input channel

corresponds to the one on the second one.

3.5 Korg MS-50 ring modulator

In this section, we reproduce the experiment of Hoffmann-Burchardi (see Section 2.3.1) on

the Korg ring modulator. We send sinusoidal signals at 100Hz and 1kHz to the Audio and

Carrier inputs of the effect (Experiment 45, see Tables 3.4 and 3.5). In a second experiment,

we swap the two input signals to test the assymetry between the two inputs (Experiment

46).
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First Experiment We extracted the spectrum of the output signal (windowed using a

Blackman window). This spectrum is displayed in Fig. 3.15(a). As we can see the number

of peaks is much larger than it should be in the case of an ideal multiplier (see Section 2.3).
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(b) 2nd Experiment

Fig. 3.15 Korg ring modulator — Output signal spectrum

We see that, similar to the Hoffmann-Burchardi experiment, the input signal frequencies

are significant as well as numerous distortion peaks.

Second Experiment After swaping of the inputs, we extracted the spectrum of the

output signal. This spectrum is displayed in Fig. 3.15(b).
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Frequency (Hz) Relative power magnitude
1100 fm + fc 0.0dB
900 fm − fc -0.0dB
1000 fc -22.1dB
100 fm -23.2dB

Table 3.4 Korg ring modulator — Strongest peaks in the output signal
spectrum (1st experiment)

The peaks above -30bB are given in Table 3.5.

Frequency (Hz) Relative power magnitude
1100 fm + fc 0.0dB
900 fm − fc -0.0dB
100 fc -22.3dB
1000 fm -23.3dB

Table 3.5 Korg ring modulator — Strongest peaks in the output signal
spectrum (2nd Experiment)

We can see that the order of the strongest peaks is not affected by the inversion and

the distortion of these peaks is very similar in both experiments (see Table C.9). How-

ever, the distortion pattern is slightly different demonstrating that the two inputs are not

symmetrical. This is expected since the effect circuitry is not symmetrical.

Frequency Magnitude (Exp. 1) Magnitude (Exp. 2)
fm + fc 46.3dB 46.3dB
fm − fc 46.2dB 46.2dB

fc 24.0dB 24.2dB
fm 23.0dB 23.0dB

Table 3.6 Comparison of the two output signal spectra of the Korg

3.6 Moogerfooger ring modulator

We reproduce the same experiment on the Moogerfooger ring modulator. We sent sinusoidal

signals at 100Hz and 1kHz to the Audio and Carrier inputs of the effect (Experiment 47, see

Table C.10). In a second experiment, we swap the two input signals to test the assymetry

between the two inputs (Experiment 48).
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First Experiment We extracted the spectrum of the output signal (windowed using a

Blackman window). This spectrum is displayed in Fig. 3.16(a). As we can see, the number

of peaks is much larger than it should be in the case of an ideal multiplier.

10
1

10
2

10
3

10
4

−40

−30

−20

−10

0

10

20

30

40

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(a) 1st Experiment

10
1

10
2

10
3

10
4

−40

−30

−20

−10

0

10

20

30

40

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(b) 2nd Experiment

Fig. 3.16 MF-102 ring modulator — Output signal spectrum

The peaks above -30dB are given in Table 3.8. The power difference between the 1st

and the 14th peaks is 29dB. We observe the presence of mostly odd-order distortion as we

would expect from such circuit.
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Frequency (Hz) Relative power magnitude
1100 fm + fc 0.0dB
900 fm − fc -0.0dB
1300 fm + 3fc -10.3dB
700 fm − 3fc -10.4dB
1000 fm -18.5dB
1500 fm + 5fc -19.7dB
500 fm − 5fc -19.9dB
3100 3fm + fc -23.1dB
2900 3fm − fc -23.3dB
100 fc -23.6dB
800 fm − 2fc -25.3dB
1200 fm + 2fc -25.5dB
1700 fm + 7fc -29.1dB
300 fm − 7fc -29.2dB

Table 3.7 MF-102 ring modulator — Strongest peaks in the output signal
spectrum (1st Experiment)

Second Experiment After swaping of the inputs we extracted the spectrum of the

output signal. This spectrum is displayed in Fig. 3.16(b).

The peaks above -30dB are given in Table 3.8. The magnitude difference between the

1st and the 14th peaks is again of 29dB. Again, we see that the effect is not symmetrical.

Again, the order of the strongest peaks is not affected by the inversion and the distortion

of these peaks is very similar in both experiments (see Table 3.9). However, the distortion

pattern is slightly different, which demonstrates that for the Moogerfooger the two inputs

are not symmetrical.

Discussion

In the four experiments on ring modulators, we observed results corresponding to the

experiments of Hoffmann-Burchardi. The spectral output is much richer than for an ideal

multiplier and, in the case of the Korg, most of these peaks were inaudible. Increasing

the input amplitudes and the distortion could bring several additional components to the

resulting sound.

Another result we have from these measurements is the contrast between the nonlinear-

ities of the Moogerfooger and the Korg. One could expect the Korg, a much older design,

to have a stronger distortion. But the experiments show that the modern MF-102 produces

a richer sound with numerous audible distortion peaks.
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Frequency (Hz) Relative magnitude
1100 fm + fc 0.0dB
900 fm − fc -0.0dB
3100 fm + 3fc -10.6dB
2900 fm − 3fc -10.7dB
100 fm -18.7dB
4900 fm + 5fc -20.0dB
5100 fm − 5fc -20.1dB
1300 3fm + fc -23.2dB
700 3fm − fc -23.3dB
1000 fc -23.2dB
1900 fm − 2fc -25.3dB
2100 fm + 2fc -25.3dB
6900 fm + 7fc -29.2dB
7100 fm − 7fc -29.2dB

Table 3.8 MF-102 ring modulator — Strongest peaks in the output signal
spectrum

Frequency Power magnitude (Exp. 1) Power magnitude (Exp. 2)
fm + fc 35.0dB 34.8dB
fm − fc 34.9dB 34.7dB
fm + 3fc 24.6dB 24.2dB
fm − 3fc 24.5dB 24.0dB

fm 16.5dB 16.1dB
fm + 5fc 15.2dB 14.8dB
fm − 5fc 15.0dB 14.7dB
3fm + fc 11.8dB 11.6dB
3fm − fc 11.7dB 11.5dB

fc 11.3dB 11.6dB
fm − 2fc 9.7dB 9.5dB
fm + 2fc 9.4dB 9.4dB
fm + 7fc 5.8dB 5.6dB
fm − 7fc 5.7dB 5.6dB

Table 3.9 Comparison of the two output signal spectra of the MF-102
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Finally, we saw that both systems are not symmetric and the choice of which signal

will be the carrier or the modulator changes the system response. This was to be expected

since the electronic designs are not symmetric either relatively to the inputs.

3.7 Summary

The results of our experiments show the complexity of the influence of the various pa-

rameters available to control the effects on their nonlinear behaviour. In the case of the

filter, there are opportunities to add a very particular colouration to the output signal by

choosing a given set of parameters. We observed that the sound spectrum characteristics

vary greatly depending on its frequency adding a new complex control dimension.

The second remark that we can make on these results is that, as reported by Hoffmann-

Burchardi (see Section 2.3), the contribution of the input and output circuitry of the effects

has to be taken into account to fully identify the sources of distortion. The introduction of

a relatively large DC component in the input signal of the filtering stage certainly influences

the characteristics of the outgoing sound.

In the following chapters, we will evaluate the ability of nonlinear modelling techniques

to integrate these observations and accurately reproduce the sound characteristics of the

devices.
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Chapter 4

Nonlinear modelling using black-box

approach

As mentioned in the introduction, research into nonlinear modelling tools has been ongoing

since the 1950’s. A large number of approaches have been explored, with the derivation

of models adapted to a set of objectives in terms of, for example, complexity, accuracy

or adequacy. A large class of models obeys to the black-box approach what consists in

building a model without any prior information on the system underlying structure. In

this case, the objective is to fit the system response as close as possible.

4.1 Linear theory

Linear systems are systems whose functional is characterized by two properties:

• Additivity: F [X + Y ](t) = F [X ](t) + F [Y ](t)

• Scalability: F [λX ](t) = λF [X ](t)

The theory of such systems has been thoroughly explored during the last century and

numerous references can be found to have a complete overview of this class of systems

(Oppenheim et al. 1999).

Non-parametric representation Linear time-invariant (LTI) systems have the well-

known property of being completely characterized in the time domain by their impulse
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response h(t), which is defined as the response of the system to a Dirac impulse δ(t).

h(t) = F [δ](t) (4.1)

Alternatively, it can be characterized in the frequency domain with the Fourier trans-

form of the impulse response H(jω):

H(jω) = FT (F [δ](t)) (4.2)

Then, the output y(t) of the system when excited by a signal x(t) can be expressed in

the time-domain by the convolution:

y(t) = (h ∗ x)(t) =
∫ +∞

−∞

h(τ)x(t− τ)dτ (4.3)

and in the frequency domain by the multiplication:

Y (jω) = H(jω)X(jω) (4.4)

The property of causality is verified if and only if ∀t < 0, h(t) = 0. The stability is

verified when the impulse response verifies
∫ +∞

−∞
|h(t)|dt < ∞.

Continuous-time parametric model LTI systems can be represented as well using

differential equations of the form (Westwick and Kearney 2003):

dly

dtl
(t) + al−1

dl−1y

dtl−1
(t) + ...+ a0y(t) = bm

dmx

dtm
(t) + ...+ b0x(t) (4.5)

where l ≤ m to have a causal system.

Using the Laplace transform, this relation becomes:

(

sl + al+1s
l−1 + ...+ a0

)

Y (s) = (bms
m + ... + b0)X(s) (4.6)

This equation gives us the Laplace transform of the impulse response of such system,

given by:

H(s) =
Y (s)

X(s)
=

bms
m + ...+ b0

sl + al+1sl−1 + ... + a0
=

B(s)

A(s)
(4.7)
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Then, the system can also be characterized by the roots of the polynomials B (zeros of

the system) and A (poles of the system).

Discrete-time parametric model By analogy to the case of continuous-time (Eq. (4.6)),

we can model a discrete-time system using the backward discrete shift operator z−1, which

is such that z−1x[n] = x[n−1]. The system is described by the discrete difference equation:

A(z−1)y[n] = B(z−1)x[n] (4.8)

The transformation from continuous to discrete time is achieved using different tech-

niques such as bilinear transform and the impulse invariant transform.

Modelling the measured output u[n] of the system by adding a white noise component

w[n] to the Eq. (4.8) gives the relation:

u[n] =
B(z−1)

A(z−1)
x[n] + w[n] (4.9)

The model is often referred to as an auto-regressive moving average (ARMA) model.

4.2 Volterra series

4.2.1 SISO model

The Volterra series is a well-known example of kernel-based model in the literature on

nonlinear modelling. First nonlinear modelling approaches were derived from the work

of Vito Volterra in 1887. He studied analytic functionals and proved that they could be

described using the expansion:

y(t) = F [x](t) =

+∞
∑

m=0

Fm[x](t) (4.10)

where Fm are functionals defined as:
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F0[x](t) = h0

Fm[x](t) =

∫

τ1

· · ·
∫

τm

hm(τ1, . . . , τm)x(t− τ1) . . . x(t− τm)dτ1 . . . dτm m > 0
(4.11)

hm : (τ1, .., τm) 7→ hm(τ1, .., τm) is a m-variable function called mth-order Volterra ker-

nel. These expansion is usually denoted as Volterra series or expansion in the literature.

We can see this expansion as:

• A generalization of the description of linear systems using their impulse response h:

y(t) = F [x](t) =

∫

τ

h(τ)x(t− τ)dτ (4.12)

• The introduction of the idea of memory in the Taylor expansion;

y(t) = F [x](t) =
∞
∑

m=0

hmx
m(t) (4.13)

To get a more general expression working for both discrete-time and continuous-time

functionals, we can rewrite the expression of the kernels:

F0[x] = h0

Fm[x] = ((hm ∗τ1 x) .. ∗τm x) m > 0
(4.14)

where ∗a is the convolution corresponding the variable a. For example, in the case of

2-variable functions, the a-convolution would be defined as:

f(b,X) = g ∗a h =

∫

a

g(a,X)h(b− a,X)da in continuous time

f [b,X ] = g ∗a h =
∑

a

g[a,X ]h[b− a,X ] in discrete time
(4.15)

This expansion describes a decomposition of the nonlinearities of the SISO system

on an infinite polynomial basis. Different expressions of this expansion were studied, in
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particular by Wiener (Wiener 1958), using different orthogonal polynomial basis for the

system description. The truncated Volterra series describe the system as a superposition

of one linear, one bilinear,..., and one m-linear system(s).

4.2.2 Laplace transform and Z-transform of the expansion

Laplace transform: If we extend the definition of the Laplace transform to the multi-

dimensional functions, we can define it as:

Hm(s1, . . . , sm) =

∫ +∞

0

. . .

∫ +∞

0

hm(t1, . . . , tm)e
−s1t1 . . . e−smtmdt1 . . . dtm (4.16)

Thus, in the case of the continuous-time expansion truncated at order M , its Laplace

transform is written as:

Y (s1, . . . , sM) =

M
∑

m=0

Hm(s1, . . . , sm)X(s1) . . .X(sm) (4.17)

Laplace transform: The equivalent formulation for the discrete-time expansion is given

by generalizing the Z-transform:

Hm(z1, . . . , zm) =
+∞
∑

k1,...,km=0

hm[k1, . . . , km]z
−k1
1 . . . z−km

m (4.18)

For an expansion truncated at order M , its Z-transform is written as:

Y (z1, . . . , zM) =

M
∑

m=0

Hm(z1, . . . , zm)X(z1) . . .X(zm) (4.19)

4.2.3 MISO model

The expansion can directly be generalized in the case of k multiple inputs, introducing

polynomial terms for each input as well as cross-terms:

y(t) =
+∞
∑

m1=0

· · ·
+∞
∑

mk=0

Fm1,...,mk
[x](t) (4.20)

with
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Fm1,...,mk
[x](t) =

∫

· · ·
∫

hm1,...,mk
(τ11, . . . , τ1m1 , . . . , τk1, . . . , τkmk

)

× x1(t− τ11) . . . x1(t− τ1m1) . . . xk(t− τk1) . . .

× xk(t− τkmk
) . . . dτ11 . . . dτ1m1 . . . dτk1 . . . dτkmk

(4.21)

4.2.4 Mathematical properties

The expansion and its kernels have the following properties:

Convergence Similarly to the case of the Taylor expansion for functions, the convergence

of the Volterra series is not guaranteed for all functionals. A sufficient condition exists in

the case of bounded inputs. The k-input Volterra expansion will converge if:

∫

· · ·
∫

|hm1,...,mk
(τ11, . . . , τ1m1 , . . . , τk1, . . . , τkmk

)|

dτ11 . . . dτ1m1 . . . dτk1 . . . dτkmk
≤ Am1,...,mk

(4.22)

and

+∞
∑

m1=0

· · ·
+∞
∑

mk=0

Am1,...,mk
Bm1

1 . . . Bmk

k < ∞ (4.23)

where B1, . . . , Bk are respectively the absolute bounds of the inputs x1, . . . , xk (ie. Bi =

‖xi‖∞)

Causality To follow the causality condition, the kernels have to be such that if ∃i ∈
{1, .., k} and ∃j ∈ {1, .., mk} such as τij < 0 then hm1,...(. . . , τij, . . .) = 0

Kernel limits The convergence condition implies that ∀m ∈ {1, .., p}, we have the limit

lim
τm→±∞

hp(.., τm, ..) = 0. We find the usual assumption made for the modelling of physical

systems that the influence of far-field past is neglected.
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Unicity The kernels as defined by the theory of Volterra are not unique. It is possible

to replace any given kernel hp(τ1, .., τp) by hp(τσ(1), .., τσ(p)) where σ is a permutation of

1, 2, .., p, without changing the behaviour of the system (Hennequin 2008).

To ensure unicity, several types of kernel structure can be chosen, like symmetrical kernels

such as ∀σ, we have hp(τ1, .., τp) = hp(τσ(1), .., τσ(p)), or triangular kernels such as if and

only if τ1 ≤ .. ≤ τp, we have hp(τ1, .., τp) = 0. Imposing these structures have the benefit

to lower the number of coefficients to compute for each kernel.

Linear systems and Volterra kernels While it is intuitive to see that a linear system

would have only the first-order kernel as non-zero kernel, it is wrong to think that this kernel

corresponds to the linear part since the kernels may not be orthogonal. In particular, this

problem has been studied byWiener who has rewritten the series in order to have orthogonal

kernels considering the distribution of the input signal.

4.2.5 Practical use

Implementation While the original Volterra series formulation describes systems in con-

tinuous time, the estimation is usually done in the discrete domain. In practice, the Volterra

expansion describing the behaviour of a causal system will be limited to an order M , and

all kernels will be measured only up to a certain lag N :

y[n] =
M
∑

m1=0

· · ·
M
∑

mk

N
∑

τ11=0

· · ·
N
∑

τ1m1=0

· · ·
N
∑

τkmk
=0

hm1,...,mk
(τ11, . . . , τ1m1 , . . . , τkmk

)

× x1[n− τ11] · · ·x1[n− τ1m1 ] · · ·xk[n− τkmk
]

(4.24)

Number of coefficients The Volterra representation is not very used in practical appli-

cations due to the number of parameters needed to characterize a system, even for low-order

nonlinearity. In the SISO case, if we want to evaluate for each kernels with a memory of

N up to order M , the number of parameters needed for one input is given by:

1 +M +M2 +M3 + ...+MN ≈ O(MN) (4.25)

If we use one of the hypotheses presented earlier to ensure the unicity of the kernels
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(either symmetrical or triangular), the number of coefficients for N ≤ M is reduced to

(Hennequin 2008):
N
∑

n=1

(

M − n+ 1

n

)

(4.26)

In applications of Volterra models, the maximal order used is mostly 3, sometimes

5, what is enough to model accurately weakly nonlinear systems, such as analog lowpass

filters. For strongly nonlinear systems, models with fewer parameters would be considered.

4.3 Block-based models

4.3.1 SISO models

To model nonlinear models with a more compact representation, the models have to be sim-

plified. One way to do so is using block-based models. Block-based models are structured

using cascades and sums of:

• linear filters (L), also referred to as memory linear blocks;

• nonlinear static functions (N), also referred to as memoryless nonlinear blocks.

We would consider only models without feedback loops. Depending on the number and

the layout of the blocks, the SISO models have been named in literature as follows:

• Wiener models: cascade of a linear and a nonlinear blocks (LN);

• Hammerstein: cascade of a nonlinear and a linear block (NL);

• Wiener-Hammerstein: cascade of a linear, a nonlinear and a linear block (LNL);

• Polynomial (or generalized) Wiener model: sum of several parallel Wiener models

with typically nonlinear blocks being powers of the input signal;

• Polynomial (or generalized) Hammerstein model: sum of several parallel Hammer-

stein models with typically nonlinear blocks being powers of the input signal.

Of course, the possibilities of combination are infinite but most applications focus on

these five types of models.
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Equivalence with Volterra kernels The block-based models can be related to a Volterra

expansion with specific kernel structure. This relation are given in Table 4.1. In the table,

we suppose that the general nonlinear static block y(t) = F (x(t)) can be expanded such as

y(t) =
∑+∞

n=0 fnx(t)
n

Model Schematic Expression Equivalent kernels

hn(τ1, .., τn)

Wiener y(t) = F ((g ∗ x)(t)) fpg(τ1)..g(τn)

Hammerstein y(t) = (g ∗ F (x(.)))(t) fpg(τ1)δ(τ2 − τ1)..g(τn − τ1)

Wiener-
Hammerstein

y(t) = (g′ ∗F ((g ∗x)(.)))(t) fp
∑

m g′(m)g(τ1 −m)..g(τn −m)

Polynomial
Wiener

y(t) =
∑

k(gk ∗ x)k(t) gn(τ1)..gn(τn)

Polynomial
Hammerstein

y(t) =
∑

k(g ∗ xk)(t) gn(τ1)δ(τ2 − τ1)..g(τn − τ1)

Table 4.1 Examples of SISO nonlinear block-based models (after Hennequin
2008)

4.3.2 MISO Hammerstein models

The extension of the block-based models to multiple-input systems is achieved by using

multiple-input nonlinear blocks. In the case of Wiener models, or any single-input model

where the input goes into a linear block, there is no unique way to extend the model.

The extension of the Hammerstein model is achieved by considering a block as nonlinear

static function of all the inputs. In the case of the polynomial Hammerstein model, we

add the power terms corresponding to each input plus the polynomial cross-terms. These

extensions are presented in Table 4.2.
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Model Schematic Expression

Hammerstein y(t) = (g ∗ (F (x1(.), .., xk(.)))(t)

Polynomial
Hammerstein

y(t) =
∑

k1,..,kl

(

gk1..kl
∗ xk1

1 ..x
kl

l

)

(t)

Table 4.2 Examples of MISO nonlinear block-based models (after Hen-
nequin 2008)

4.3.3 Number of coefficients

The simple structure of the block-based structure allow to build high-order models with

fewer parameters than in the case of Volterra series. The number of parameters required

for a system of order M and of memory N is presented in Table 4.3. We assume that the

nonlinear function are known either analytically or by polynomial expansion.

Model Analytic nonlinear function Polynomial nonlinear function

Hammerstein M M +N

Wiener- Hammerstein 2M 2M +N

Polynomial Wiener / NM

Polynomial Hammerstein / NM

Table 4.3 Computational complexity of SISO nonlinear block-based models

4.4 Summary

These two categories of models are the more common encountered in nonlinear modelling.

The reasons of this are that, in the case of the Volterra series, virtually any nonlinear
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systems can be modelled if enough orders of distortion are calculated. In the case where the

systems is too strongly nonlinear, and the number of coefficients to extract is too large, the

block-based models are a simple alternative that still can model accurately a wide class of

physical systems. The block representation is also suited to represent nonlinear phenomena

where subsystems can be identified. Furthermore, the equivalence between Volterra kernels

and block-based parameters allows to use the same identification techniques.

Other models exists such as the NARMAX models (Leontaritis and Billings 1985a,b),

neural networks (Chen et al. 1990), adaptive polynomial filtering (Mathews 1991). As in

the case of the models described in this chapter, they are extension of linear representations.

Following the choice of a model, we have to choose one among the various identification

methods present in literature in order to extract the system parameters, what is the subject

of the next chapter.
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Chapter 5

Identification methods

In this chapter, we explain some of the existing methods for identifying the parameters

of nonlinear models based on Volterra kernels or simple block representations (Wiener,

Hammerstein and polynomial Hammerstein).

5.1 Excitation signals

To evaluate the response of nonlinear methods, several methods have been reported in the

literature, using three main types of excitation signals:

• Dirac impulse train;

• Sinusoids and swept-sines;

• Pseudo-random and random signals.

We will only discuss here the two last ones.

5.1.1 Sinusoids and swept-sines

For extracting the response of a system over the whole spectrum, it is possible to use

sinusoids with frequencies sampling the frequency domain. Theoretically, the number of

sinusoids necessary in the discrete-time domain is finite and equal to fs/2. Examples of

identification of Volterra kernels by designing multisine signals that cover the kernel delay

domain exist in literature (Evans et al. 1996), designing the signals so that it covers the

kernel delay domain.
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Another way to span the whole frequency domain is to use a swept-sine signals (often

called chirps). This category of signal can be represented as a frequency-varying sinusoidal

signal. It is written as:

x(t) = sin(Φ(t)) (5.1)

where the instantaneous frequency is given by:

fi(t) =
1

2π

dΦ

dt
(t) (5.2)

Two main types of swept-sine signals are used in practice: the linear swept-sine, which

means that the instantaneous frequency changes linearly (Φ(t) = 2π[αt2/2 + βt] and fi =

αt + β), and the logarithmic swept-sine, which means that the instantaneous frequency

changes exponentially (Φ(t) = 2παβ[exp(t/β)− 1] and fi = α exp(t/β)).

5.1.2 Pseudo-random and random signals

A more common type of signal used for system identification is a random signal. This

class of signals exhibits very interesting properties that can be used in the context of

identification. This is particularly true in the case of white Gaussian noise.

White noise A white noise has the property of having its samples uncorrelated with

each other. This property is related to the flatness of its power spectrum:

∀τ1, τ2 Cov(x(t− τ1)x(t− τ2)) = Rxx(τ1, τ2) = σ2
xδ(τ2 − τ1) ⇔ ∀ω Sx(ω) = σ2

x (5.3)

Furthermore, white noise is a stationary and ergodic process. Due to his flat power spec-

trum, a white noise has the advantage of exciting the whole frequency domain.

Gaussian noise A Gaussian noise is such that each sample follows a Gaussian law, whose

probability density function is given by:

p(x) =
1

√

2πσ2
x

exp

(

− x2

2σ2
x

)

(5.4)

Maximum Length Sequence Maximum length sequence (MLS) is a pseudo-random

binary sequence that was developed for digital systems using registers. The signal consists
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of all the binary sequences that the system can generate, and it has the property of having

a flat spectrum, except around 0Hz. We will not use this category of signals in this thesis,

however MLS has been used for the identification of linear systems (Rife 1989) and Volterra

series (Reed and Hawksford 1996).

5.2 LTI system identification

The material in this section is based on Westwick and Kearney (2003), Chapter 5.

Direct impulse response measurement The straightforward way to calculate the

impulse response of a system would be to measure the response of the system to an impulse

signal, then deconvolve it from the output signal. Problems arise from the fact that:

• In practice, it is complicated to generate a good approximation of a Dirac function

by using a finite impulse of large amplitude staying in the linear range of the system;

• Deconvolving the input signal from the system response emphasizes high frequency

noise;

• Pulse inputs have very little energy due to their time localization. Consequently, the

signal-to-noise ratio will be very low except for usual levels of measurement noise.

Techniques exist to minimize those drawbacks, for example by averaging over system re-

sponse to several pulses.

Frequency response identification Direct frequency response of the system could be

measured by extracting its parameters from the system output using the formula:

F [sin(ω.)](t) = |F (jω)| sin (ωt+ ∠F (jω)) (5.5)

However, the evaluation of the full spectrum is limited by the number of measurements.

The rest of the curve would have to be interpolated. Another way to measure all the

frequencies in one pass is to use swept-sine signals (Müller 2001).
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Correlation-based method This class of method relies on the response of the system

to noise inputs that will excite the whole spectrum in a single measurement. In the case of

a white noise signal, we know that the auto-correlation of the input x[n] is φxx[τ ] = σ2
xδ[τ ],

and that the input-output cross-correlation of the system φxy[τ ] whose output is y[n] equals:

φxy[τ ] = E(x[n− τ ]y[n]] = E(x(t− τ)(h ∗ x)[n])
= E(x̄[τ − n](h ∗ x)[n]) = E((x̄ ∗ (h ∗ x))[τ ])
= (h ∗ E((x ∗ x̄)))[τ ] = (h ∗E[φxx])[τ ]

= (h ∗ E[σ2
xδ])[τ ] = σ2

xh[τ ]

(5.6)

where x̄ is the time-reversed version of x.

In the case of a non-white noise input, a decorrelation algorithm can be used to achieve

the estimation of the impulse response (Westwick and Kearney 2003) using:

ĥ = Φ−1
xxφxy where Φxx[i, j] = φxx[i− j] (5.7)

Westwick also provides an algorithm designed to reduce the influence of noise in the

impulse response estimation using the Akaike information criterion (Akaike 1974) to get

the number of most significant samples of the estimate to take into account.

Stochastic frequency response The cross-correlation method has its alternative in the

frequency domain. We know from the previous paragraph that:

φxy = h ∗ φxx (5.8)

which is equivalent in the frequency domain to:

Sxy(f) = H(f)Sxx(f) (5.9)

where Sxy = FT (φxy) and Sxx = FT (φxx). Sxx is also referred to as the input power

spectral density, and Sxy as the input-output cross-power spectral density. In the case of a

white noise, we have the property that Sxx(f) = σ2
x.

The frequency response of the system is estimated from estimates of the input power



5 Identification methods 60

and the input-output cross-power spectra:

Ĥ(f) =
Ŝxy(f)

Ŝxx(f)
(5.10)

In practice, issues arise from the fact that this quantity is not a good estimator of the

power spectrum, and so the input power spectrum exhibits large magnitude dips. To deal

with that problem, the estimate has to be averaged over several measurements. This is

generally considered a time-consuming technique, particularly in comparison with swept-

sine-based techniques (Müller 2001).

Least-squares regression Another way to write the input-output relation is of the form:
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...
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x(1) 0 0 · · · 0

x(2) x(1) 0 · · · 0
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...
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h(1)

h(2)

h(3)
...

h(T )



















(5.11)

or equivalently:

y = Xh (5.12)

which is a suitable formulation for applying usual least-squares regression.

Assuming the measured output z is sum of the system output y and measurement

noise n assumed independent of the input, the least-squares solution is given by the usual

formula:

ĥ =
(

XTX
)−1

XTz (5.13)

Extension to nonlinear analysis As we will see later in this section, most of the

techniques that were developed for identification of nonlinear systems are based on the

identification methods we developed in this section.
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5.3 Order separation

The presence of parallel subsystems of different orders in nonlinear models is complex

to identify as a mixture. One possible preprocessing is called order separation, and it

consists of extracting separately the response of each order before performing parameter

identification on each channel.

5.3.1 Method

This method is described in Haber and Unbehauen (1990). In the case of discrete-time

Volterra series, we can write it as sum of functionals:

y(t) =

+∞
∑

n=0

Fn[x](t) (5.14)

where

Fn[x](t) = ((hm ∗τ1 x) .. ∗τm x) (t) (5.15)

In the case of other nonlinear models as the block-based ones, the definition of these

functionals can vary but it is still possible to identify those channels of different order.

The channel of order n will have the property that, if we send through the system a

scaled version of the input signal, we have the relation:

Fn[αx](t) = αnFn[x](t) (5.16)

By using different scalings of the same signal, we get a set of equations:

yi(t) =
+∞
∑

n=0

αn
i Fn[x](t) + ei(t) (5.17)

where ei(t) represents the noise introduced by the measurement of the system and not

included in the model.

If we use M different scaling factors, and we evaluate the functionals up to order N ,

assuming that higher orders are negligible and are included in the system noise ei, we get
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an equation system with a Vandermonde matrix:









y1(t)
...

yM(t)









=









α1 · · · αN
1

... · · · ...

αM · · · αN
M

















F1[x](t)
...

FN [x](t)









+









e1(t)
...

eN (t)









(5.18)

The separation is achieved by a least-mean square estimation of the functionals with a

sufficient number of scaling factors (M > N). The estimates of each order is given by:









F1[x](t)
...

FN [x](t)









= A†









y1(t)
...

yM(t)









(5.19)

where A† is the pseudo-inverse of the Vandermonde matrix of the equation.

5.3.2 Use

Orders and pseudo-inverse conditioning When the number of orders increases for

amplitudes in a given interval, the matrix quickly becomes ill-conditioned. One way to

improve the conditioning is to use positive and negative scaling factors (Hennequin 2008).

Separation of even and odd orders The use of positive and negative scaling factors

enables separation of perfectly even and odd orders (Haber and Keviczky 1999).

Scaling factors and pseudo-inverse conditioning The minimal conditioning at fixed

N has been measured by Hennequin (Hennequin 2008) for scaling factors α spaced by 1.2dB

(scaling factor 1.32).

5.4 Correlation-based methods

This class of methods was the first one to be developed for the identification of nonlinear

systems. The material in this section is based on Westwick and Kearney (2003), Chapter 6.
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5.4.1 Functional expansions

Volterra kernel orthogonalization These methods have been developed following the

works of Wiener on the identification of continuous-time Volterra kernels (Wiener 1958)

and of Lee and Schetzen for the discrete-time case (Lee and Schetzen 1965). The main

idea of these techniques is that the identification of each separate Volterra kernel is made

difficult by the fact that they are not orthogonal for any input signal. They have to be

orthogonalized conditionally to the chosen input, usually a white noise. This is usually

achieved using the Gram–Schmidt orthogonalization method.

In the case of a white Gaussian noise input of unit variance, it has been demonstrated

in literature that the orthogonalization of the discrete-time kernels leads to an infinite sum

of multi-input Hermite polynomials as follows (Westwick and Kearney 2003):

y[n] =

∞
∑

q=0

∞
∑

τ1=0

. . .

∞
∑

τq=0

γ(q)
τ1,..,τq

H(q)(x[n− τ1], .., x[n− τq]) (5.20)

In case of a non-unit variance, the orthogonality can be established by the substitution

(Westwick and Kearney 2003):

H(q)(x[n− τ1], .., x[n− τq]) → H(q)
N (x[n− τ1], .., x[n− τq]) (5.21)

where H(q)
N is the normalized form of the Hermite polynomials. For example, the second-

order Hermite polynomial H(q)(u) = u2 − 1 becomes the second-order normalized Hermite

polynomial H(q)
N (u) = u2 − σ2

u (see Appendix D).

Then, for a white Gaussian noise of variance σ2
u, the orthogonalized expansion is:

y[n] =

∞
∑

q=0

∞
∑

τ1=0

. . .

∞
∑

τq=0

γ(q)
τ1,..,τq

H(q)
N (x[n− τ1], .., x[n− τq]) (5.22)

Coefficient identification For the estimation of the system kernels, we have to truncate

the orthogonalized expansion:

y[n] =

Q
∑

q=0

T−1
∑

τ1=0

. . .

T−1
∑

τq=1

γ(q)
τ1,..,τq

H(q)
N (x[n− τ1], .., x[n− τq]) (5.23)
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For the particular example of Q = 2. we can derive the relationship between the

symmetrical kernels and the coefficients γ:

h0 = γ(0) (5.24)

h1(τ) = γ(1)
τ for 0 ≤ τ < T (5.25)

h2(τ, τ) = γ(2)
τ,τ for 0 ≤ τ < T (5.26)

h2(τ1, τ2) = γ(2)
τ1,τ2

/2 for 0 ≤ τ1 < τ2 < T (5.27)

Kernel values for τ2 < τ1 are obtained by symmetry h2(τ1, τ2) = h2(τ2, τ1).

We identify the coefficients by estimating the regression matrix X:

X[n, :] =
[

H(0)
N H(1)

N (x[n]) . . .H(1)
N (x[n− T + 1])

H(2)
N (x[n], x[n]) H(2)

N (x[n], x[n− 1]) . . .
]

(5.28)

If we denote the vector:

θ =
[

γ(0)γ
(1)
0 . . . γ

(1)
T−1γ

(2)
0,0γ

(2)
0,1 . . . γ

(2)
0,T−1γ

(2)
1,1 . . . γ

(2)
T−1,T−1

]T

(5.29)

The input-output relationship becomes:

y = Xθ (5.30)

Solving this equation is:

θ̂ =
(

XTX
)−1

XTy (5.31)

Due to the orthogonality of the polynomials, the Hessian XTX will be diagonal for

infinite long records and can be inverted by inverting the diagonal elements. The k-th

coefficient of θ is:

θ̂k =
X[:, k]Ty

X[:, k]TX[:, k]
(5.32)

The first kernels can be extracted from the characteristics of the output signal (mean

µy and standard deviation σy) (Westwick and Kearney 2003):

ĥ0 = θ̂1 = µy (5.33)
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and

ĥ1(τ) =
[

θ̂2 . . . θ̂T+1

]

=
1

σ2
x

φ̂xy(τ) (5.34)

where φ̂xy is the estimate of the cross-correlation between the input and the output signals.

Due to the finite length of the recording, the columns of the matrix X are not exactly

orthogonal. To eliminate the projection error, it is possible to correct the estimation by

subtracting the output of the zero-kernel (µy) from the output signal before computing the

correlation:

ĥ1(τ) =
1

σ2
x

φ̂xv0(τ) (5.35)

where v0 = y − ĥ0 = y − µy.

This expression can also be written in the frequency domain:

Ĥ1(f) =
1

Nσ2
x

X∗(f)V0(f) (5.36)

Similar observations lead to the estimate of the second-order kernel:

ĥ2(τ, τ) =
1

2σ4
x

φxxv1(τ, τ) (5.37)

ĥ2(τ1, τ2) =
1

2σ4
x

φxxv1(τ1, τ2) (5.38)

where φuvw(τ1, τ2) = E [u(t− τ1)v(t− τ2)w(t)] and v1 = v0 − (ĥ1) ∗ x.
As for order 1, this relation has a frequency-domain equivalent:

Ĥ2(f1, f2) =
1

2Nσ4
x

X∗(f1)X
∗(f2)V1(f1 + f2) (5.39)

The Lee-Schetzen algorithm Based on the previous equations, Lee and Schetzen (Lee

and Schetzen 1965) developed an algorithm for kernel estimates detailed in Westwick and

Kearney (2003):

1. Estimate the zero-order kernel:

ĥ0 = µy (5.40)
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2. Subtract ĥ0 from the output signal to get the zero-order residue:

v0[n] = y[n]− ĥ0 (5.41)

3. Estimate the first-order Wiener kernel:

ĥ1[τ ] =
1

σ2
x

φxv0 (5.42)

4. Compute the output of the first-order Wiener kernel:

ŷ1[n] =
(

k̂1 ∗ x
)

[n] (5.43)

5. Compute the first-order residue:

v̂1[n] = v̂0[n]− ŷ1[n] (5.44)

6. Estimate the second-order Wiener kernel:

ĥ2[τ1, τ2] =
1

2σ4
x

φxxv1 (5.45)

7. Estimate the higher-order kernels similarly. The order q is obtained using the qth-

order cross-correlation φxqvq−1 , with the residue vq−1 such that vq−1 = vq−2 − ŷq−1

ĥq[τ1, .., τq] =
1

q!σ2q
x

φxqvq−1 [τ1, .., τq] (5.46)

As showed earlier, it is also possible to compute that algorithm in the frequency domain.

As said in Westwick and Kearney (2003), this algorithm is correct only in the case

where the input is actually a white Gaussian noise so its performance is as good as the

input correctly approximates this ideal signal.
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5.4.2 Hammerstein model

Correlation-based methods can be simplified for the case of block-based models, such as

the Hammerstein model (Westwick and Kearney 2003).

In this case, the input-output relation is:

y[n] = h ∗
M
∑

m=0

κmx
m[n] =

T
∑

τ=0

h[τ ]
M
∑

m=0

κmx
m[n− τ ] (5.47)

We rewrite the sum using Hermite polynomials:

y[n] =
T
∑

τ=0

h[τ ]
M
∑

m=0

γmH(m)
N (x[n− τ ]) (5.48)

So then, when we calculate the input-output first-order cross-correlation, we get:

φxy[k] =
T
∑

τ=0

h[τ ]
M
∑

m=0

γmE
[

x[n− k]H(m)
N (x[n− τ ])

]

=

T
∑

τ=0

h[τ ]

M
∑

m=0

γmσ
m
x E

[

x[n− k]H(m)

(

x[n− τ ]

σx

)]

(5.49)

Using the fact thatH(1)(x) = x, we know from the orthogonality property of the Hermite

polynomials that:

E
[

x[n− k]H(m)
N (x[n− τ ])

]

=







σ2
xE[x[n − k]x[n− τ ]] if m = 1

0 otherwise
(5.50)

Then, we get from Eq. (5.49):

φxy[k] =

T
∑

τ=0

h[τ ]γ1σ
2
xΦxx[k, τ ] (5.51)

which can be written vectorially:

φxy = γ1σ
2
xΦxxh (5.52)
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where we can decide arbitrarily that γ1 = 1/σ2
x by rescaling the filter h. One should notice

that in the case of systems with only even-order nonlinearities, γ1 is 0 and so an alternative

method would have to be used. However, none of the systems studied in this thesis fall in

that case.

Once the filter is known, the polynomial coefficients γ can be extracted by linear re-

gression:

y = Wγ + ǫ (5.53)

whereX[n, q] = H(q−1)(x(t)) andW is the matrix formed by filtering each column ofX with

h (ie. W[n, q] =
∑

τ

h[τ ]X[n − τ, q]). The use of the Hermite polynomials is preferable

to improve the estimation due to their particular orthogonality property but any other

polynomial base could be used.

5.4.3 Wiener model

Using similar calculations as in the previous section, Westwick (Westwick and Kearney

2003) explains that for a system such that:

y[n] =
M
∑

m=0

κm(h ∗ x)m[n] =
M
∑

m=0

(

T
∑

τ=0

h[τ ]x[n − τ ]

)m

(5.54)

the filter h can be extracted with the same relation (assuming that the system has a

odd-order nonlinearities):

φxy = σ2
xΦxxh (5.55)

Here, again, if we write the nonlinearity polynomial as
∑

m

κmx
m =

∑

m

γmH(m)
N (x), we can

extract these coefficients by linear regression:

y = Uγ + ǫ (5.56)

where U has columns such that u = h ∗ x and U[n, :] =
[

1 H(1)
N (x[n])...H(M)

N (x[n])
]

. Once

again, the normalized Hermite polynomials H(m)
N are chosen for their particular orthogo-

nality property which improves the estimation, but again, other polynomial bases could be

used.
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5.4.4 Polynomial Hammerstein model

We look here at the polynomial Hammerstein model which has the advantage of having

a reasonable level of complexity while reducing significantly the number of parameters

compared to Volterra series. We follow the methodology given by Westwick for block-

based models (Westwick and Kearney 2003).

In that model, the output of the system is given by:

y[n] =
M
∑

m=0

(hm ∗ xm)[n] =
M
∑

m=0

T
∑

τ=0

hm[τ ]x
m[n− τ ] (5.57)

Here again, this relation can be rewritten using the normalized Hermite polynomial.

We consider a new set of filters Ln such that:

y[n] =
M
∑

m=0

T
∑

τ=0

Lm[τ ]H(m)
N (x[n− τ ])

=

M
∑

m=0

T
∑

τ=0

σm
x Lm[τ ]H(m)

(

x[n− τ ]

σx

)

(5.58)

In this case, the first-order cross-correlation between the residue vp and xp = H(p)
N (x) is

given by:

φxpvp[k] =

M
∑

m=0

T
∑

τ=0

Lm[τ ]E
[

xp[n− k]H(m)
N (x[n− τ ])

]

(5.59)

Due to the stationarity of the signal, we have:

E
[

xp[n− k]H(m)
N (x[n− τ ])

]

=







σp+m
x E

[

H(p)
(

x[n−k]
σx

)

H(m)
(

x[n−k]
σx

)]

if τ = k

σp+m
x E

[

H(p)
(

x[n−k]
σx

)]

E
[

H(m)
(

x[n−τ ]
σx

)]

otherwise

(5.60)

and then, due to Hermite polynomials orthogonality:

E

[

H(p)

(

x[n− k]

σx

)

H(m)

(

x[n− k]

σx

)]

=







p! if m = p

0 otherwise
(5.61)



5 Identification methods 70

and:

E

[

H(p)

(

x[n− k]

σx

)]

E

[

H(m)

(

x[n− τ ]

σx

)]

= 0 (5.62)

since all Hermite polynomials have zero-mean for a white Gaussian noise of variance 1

(E
[

H(m)(x)
]

= E
[

H(m)(x)H(0)(x)
]

)

That means that Eq. (5.59) becomes:

φxpvp [k] =

T
∑

τ=0

Lp[τ ]E
[

xp[n− k]H(p)
N (x[n− τ ])

]

(5.63)

and:

φxpvp[k] = σ2p
x p!Lp[k] (5.64)

So we see that the coefficients can be extracted straightforwardly, assuming that the

actual involved signals are close to an ideal white Gaussian noise.

We can also extract directly from Eq. (5.63) the relation:

φxpvp [k] =

T
∑

τ=0

Lp[τ ]φxpxp
[k − τ ] (5.65)

which means in the frequency domain that:

FT (Lp)(f) =
Sxpvp(f)

Sxpxp
(f)

(5.66)

where Sxpvp is the cross-spectral density function between xp and vp. This method to the

contrary of the one coming from Eq. (5.64) is using the measured power spectral density

of xp rather than the ideal one, assuming that the input x would be an infinitely-long ideal

white Gaussian noise.

Finally, we have to transform the filters Lm (1 < m < M) to get the filters hm using

the fact that:












H(0)
N (x)

H(1)
N (x)
...

H(M)
N (x)













= B













1

x
...

xM













(5.67)
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where B is such that:

B[n, q] =







n! (−1)k

k!2k(n−2k)!
q = n− 2k and n > q

0 otherwise
(5.68)

we get that:

y(t) =

M
∑

m=0

Lm ∗ H(m)
N (x)

=
M
∑

m=0

σm
x Lm ∗ H(m)

(

x

σx

)

=

M
∑

m=0

σm
x Lm ∗

M
∑

k=0

B[m, k]xk

=
M
∑

k=0

(

M
∑

m=0

σm
x B[m, k]Lm

)

∗ xk

=

M
∑

k=0

hk ∗ xk

(5.69)

which means that:

h = BTL (5.70)

5.4.5 Extension to two-input systems

In the case where we have a two-input/one-output system (such as ring modulators), we can

extend the methods presented earlier. Indeed, we can start the calculation by considering

now all the orders of two-variable polynomials and using the fact that we are sending two

independent signals, x1 and x2, to the two inputs of the system so that the cross-correlation

of any power and any time-translation of one signal with a power of the other will follow:

E
[

xk
1[n− τ ]xl

2[n]
]

= E
[

xk
1[n]
]

E
[

xl
2[n]
]

(5.71)

which will bring us back to the expression we gave for the expectations related to white

Gaussian noise signals and their powers in the previous sections.
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Two-input polynomial Hammerstein model

In this model, the output can be written as:

y[n] =
+∞
∑

m=0

+∞
∑

m′=0

(

hmm′ ∗
(

xm
1 [n]x

m′

2 [n]
))

[n] (5.72)

what can be rewritten, if we denote xmm′ = H(m,m′)
N (x1, x2), using H(m,m′)

N as the two-

variable Hermite polynomial of order (m,m′) as given in Appendix D:

y[n] =
+∞
∑

m=0

+∞
∑

m′=0

(Lmm′ ∗ xmm′) [n] (5.73)

The extraction of the coefficient of order (m,m′):

φxpp′y
[k] = E

[

xpp′[n− k]
+∞
∑

m=0

+∞
∑

m′=0

(Lmm′ ∗ xmm′) [n]

]

=

+∞
∑

m=0

+∞
∑

m′=0

+∞
∑

τ=0

Lmm′ [τ ]E [xpp′[n− k]xmm′ [n− τ ]]

=

+∞
∑

τ=0

Lpp′[τ ]φxpp′xpp′
[k − τ ]

= p!p′!Lpp′[k]

(5.74)

Thus, as in the case of a single input, the filter coefficients can be extracted directly

from the ideal autocorrelation of a WGN signal:

Lpp′[k] =
1

p!p′!
φxpp′y

[k] (5.75)

or from decorrelation, for example in the spectral domain:

FT (Lpp′) =
Sxpp′y

Sxpp′xpp′

(5.76)
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5.5 Explicit least-squares method

In this section, we look at the explicit least-squares methods for model identification re-

ferred to as Hunter-Korenberg algorithm in Westwick and Kearney (2003). The algorithm

has been primarily developed for identification of Volterra kernels, and the results can be

extended for block-based models. This method is equivalent to the one in the previous sec-

tion assuming that the input signals are ideal WGN signals. However, when this hypothesis

is not fulfilled, this method will solve explicitly the least-squares regression of the output

signal on the polynomial expansion (Eq. (5.30)), making no hypothesis on the structure of

the input noise signals, thus having the Hessian XTX no longer with orthogonal columns.

5.5.1 Kernel orthogonalization

With this technique, the orthogonalization of the different kernels (e.g., using Hermite

polynomials for white Gaussian noises) is no longer necessary since the regression is solved

explicitly. However, in order to get Hessian matrices with better characteristics such as

having the highest coefficients mostly located around the matrix diagonal, we will still use

the orthogonalization method associated with the idealized signal.

5.5.2 Functional expansions

Westwick provides the equations necessary for the identification of the two first orders

of functional expansions, with optimizations to minimize computation and memory space

needs. However, it states that the identification of higher order would require an excessive

amount of resources. For this reason, we would extend the results of the book to block-based

models in order to work with higher-order models.

5.5.3 Polynomial Hammerstein model

We change the matrix X to remove unnecessary (zero) coefficients. We build it such that:

X = [X0 X1 . . . XN] (5.77)
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where Xm are matrices such that:

X0[n] = H(0)
N

X1[n, :] =
[

H(1)
N (x[n]) . . .H(1)

N (x[n− T + 1])
]

X2[n, :] =
[

H(2)
N (x[n], x[n]) . . .H(2)

N (x[n− T + 1], x[n− T + 1])
]

· · ·

(5.78)

We do the same modification on the θ vector such that:

θ =
[

γ(0) γ
(1)
0 . . . γ

(1)
T−1 γ

(2)
0 . . .

]

(5.79)

We then need to solve the least-squares regression:

(XTX)θ = XTy (5.80)

As explained by Westwick, Korenberg (Korenberg 1988) optimized the solving of that

regression by using the internal structure of the matrices involved.

Hessian computation

The Hessian H = XTX can be computed more efficiently by taking into account the block

structure of the regression matrix X. It is then possible to partition the computation as:

H =















X0
TX0 X0

TX1 X0
TX2 · · ·

X1
TX0 X1

TX1 X1
TX2

. . .

X2
TX0 X2

TX1
. . .

. . .

. . .
. . .

. . .
. . .















=















H0,0 H0,1 H0,2 · · ·
H1,0 H1,1 H1,2

. . .

H2,0 H2,1
. . .

. . .

. . .
. . .

. . .
. . .















(5.81)

with Hn,q = HT
q,n

According to Westwick, the 1x1 matrix H0,0, the 1xT matrix H0,1 and the TxT matrix
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H1,1 are such that:

H0,0 = N

H0,1[1, 1] = Nµx

H0,1[1, k + 1] = H1,0[k]− x[N − k + 1]

H1,1[n, q] = X1[:, p]
TX1[:, q]

H1,1[l + 1, 1] = Nφuu(l)

H1,1[l + k + 2, k + 1] = H1,1[l + k + 1, k]− u[N − k + 1]u[N − k − l + 1]

(5.82)

with µx the mean of the input signal x.

The other matrices are different than the ones for Volterra kernels. For example, we

will have H0,2 as a 1xT matrix such that:

H0,2[1, 1] =

T−1
∑

n=0

u[n]2

= Nφuu(0)

H0,2[1, k + 1] =
T−1
∑

n=k

u[n]2

= H0,2[1, k]−H(2)
N (u[N − k + 1])

(5.83)

and H1,2 as a TxT matrix such that:

H1,2[n, q] = X1[:, p]
TX1[:, q]

H1,2[l + 1, 1] = Nφuu2(l)

H1,2[l + k + 2, k + 1] = H1,2[l + k + 1, k]−H(2)
N (u[N − k + 1])H(2)

N (u[N − k − l + 1])

(5.84)

Other blocks can be computed on a similar way, using higher-order auto-correlations of

the input signal.
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Right member computation

The right member of the equation corresponds to O = XTy that can also be decomposed

as:

O =













X0
Ty

X1
Ty

X2
Ty

. . .













=













O0

O1

O2

. . .













(5.85)

with O0 a 1x1 vector and Ol, for l > 0, Tx1 vectors. This gives block by block:

O0 = Nµz (5.86)

where µz is the average of the output signal, and:

O1[k] = X1[:, k]
Ty

=

T−1
∑

n=0

x[n− k + 1]z[n]

= Nφuz(k − 1)

(5.87)

and:

O2[k] = X2[:, k]
Ty

=

T−1
∑

n=0

H(2)
N (x[n− k + 1])z[n]

= Nφ
H

(2)
N

(u)z
(k − 1)

(5.88)

and so on.

The computation of the high-order correlation can be optimized by choosing carefully

the loop order to compute all the coefficients. Furthermore, in the case of the polynomial

Hammerstein model, only 1st-order correlations are involved, so they can be computed effi-

ciently in the frequency domain. Then, the regression solution is extracted using Cholesky

factorization.
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5.5.4 Extension to two-input systems

As in the case of the correlation-based methods, the extension of the method to two-input

systems is solved by adding more terms in the regression. Thus, we will add in vector X

terms relative to the polynomial signals related to the second input signal, as well as the

polynomial cross-terms between the two. The computation and the inversion of the Hessian

stay the same.

5.5.5 Computation cost

Despite several optimization, this algorithm stays significantly more costly than the previ-

ous one. In terms of computation time, the computation of all the Hessian terms and the

factorization are significantly longer than correlation calculations. In terms of memory, the

Hessian is usually a very large matrix as soon as the desired number of orders and filter

length become significant, requiring a large amount of computer memory.

5.6 Swept-sine-based method

This method, first introduced by Farina (Farina and Farina 2000), has been recently de-

veloped using logarithmic swept-sine excitation and deconvolution to extract the impulse

responses of each distortion order of a nonlinear system. This method is implicitly related

to the polynomial Hammerstein model due to its output composed of n impulse responses

related to n filters, respectively corresponding to n-th distortion order.

5.6.1 Excitation signal

A swept-sine (see Section 5.1.1) of length T starting at f1 (fi(0) = f1) and ending at f2

(fi(T ) = f2) has a phase Φ such that:

Φ(t) = 2π
f1T

ln(f2/f1)

(

e(t/T ) ln(f2/f1) − 1
)

(5.89)

However, as demonstrated in Rébillat et al. (2011), the phase properties make it neces-

sary to limit ourselves to some duration Tm such that Tm = (2mπ− π/2) ln(f2/f1). In this
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particular case:

cos(kΦ(t)) = cos(Φ(t+∆tk)) with ∆tk =
Tm ln k

ln(f2/f1)
(5.90)

which means that rescaling the time scale is equivalent to translate the time origin.

5.6.2 Inverse signal

The construction of an inverse signal x̊ defined such that x̊ ∗ x(t) = δ(t) is not always

mathematically possible (Rébillat et al. 2011) due to the band-limited property of the

signal. However, an approximate inverse exists and it is given as the time-inverse of the

swept-sine with a decreasing exponential envelope such that:

x̊(t) =
f1 ln(f2/f1)

T
exp

(

t ln(f2/f1)

T

)

s(−t) (5.91)

To model properly the nonlinear behaviour of the system up to order N , since the N -th

distortion produces components up to frequency f3 = Nf2, the inverse signal has to be

defined up to Tinv such that x̊(Tinv) = f3.

5.6.3 Extraction of the impulse responses

After deconvolution of the response y(t) of the system from the input x(t), we get a signal

s(t) = y ∗ x̊(t) where the m-th order impulse response of length K is such that:

Lm[n] = s[∆tm − n] for 0 ≤ n < K (5.92)

A last step is required to get the expression of the filters in the polynomial Hammerstein

expansion. Indeed, the filters Lm(f) correspond to an expansion with Chebyshev polyno-

mials (which are such that T (m)(sin(t)) = sin(mt)). A linear transform can then convert

the filter family L into the desired filters H as explained in Novak (2009).

5.6.4 Extension to two-input systems

The extension of this method to the case of two-input systems is not straightforward. If

the swept-sine signal can cover the whole frequency range along one dimension, it is not
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possible to get the same property on a two-dimension frequency domain.

5.7 Summary

In this section, we reviewed some of the more common nonlinear model identification

techniques, in order to extract the parameters of a system in few of the model examples we

saw in Chapter 4, and we extended these methods to the case of multi-input systems. The

methods based on correlation are the most widespread nowadays Westwick and Kearney

(2003), but they suffer from the intrinsic drawbacks of the power spectral density and

cross-spectral density estimation (Oppenheim et al. 1999). It is possible to improve those

estimations using explicit resolution of the least-squares equation but with significantly

higher computation costs. A new method using a swept-sine signal excitation does not

have these flaws, but it is not suitable for the identification of multi-input systems which

is problematic in our scope since several synthesizer effects have more than one input.

The next step is then to apply the techniques presented here to our systems (see Ap-

pendix B) and test their performance compared to the expected result (see Chapter 3) and

simulation techniques based on circuit modelling. This will be the purpose of the next

chapter.
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Chapter 6

Applications to synthesizer circuits

This section is organized in two main parts. First, we test the identification methods

presented in the previous chapter on numerical implementations of the Moog ladder filter

as well as on measurements made on the system. Next, we test the two-input extension of

these methods to the two ring modulators presented in Appendix B, the Korg MS-50 and

the Moogerfooger MF-102.

6.1 Implementation of the identification methods

We implemented the methods based on cross-correlation using the frequency-domain ex-

pressions for the identification of Wiener, Hammerstein and polynomial Hammerstein mod-

els. In order to improve the estimation of the cross-power spectral density and the power

spectral density, we apply the algorithm on signal segments of length sixteen times the

desired filter length in the model. Then, the final estimation is made by averaging all these

results, performing the inverse Fourier transform and truncating the resulting filter to its

expected length.

Computation time Our estimations were performed on a Mac Pro (2x2.26GHz Quad-

core, 12GB of RAM) using Matlab. The estimations on the three block models were usually

quite quick (< 10s).

Estimation error To evaluate the accuracy of our modelling, we use the criterion intro-

duced in Kearney and Hunter (1983) called variance accounted for (VAF) which is equal
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to:

V AF =
var(y − ŷ)

var(y)
(6.1)

6.2 Moog ladder filter numerical models

6.2.1 Circuit modelling

In cases where the electronic structure of the system is known, there are alternatives to the

black-box approach developed in Chapter 4. Knowing the characteristics of the nonlinear

components used in the circuits that we saw in the Chapter 2, we can use different strategies

to model the behaviour of the system. Examples are:

• Backward finite difference;

• Truncated Volterra series.

6.2.2 Backward finite difference

Theory

This method is a well-known technique of discretization for differential equations. The

discretization is achieved by using the approximation:

df

dt
(t) ≈ f(t)− f(t−∆t)

∆t
(6.2)

what gives in discrete time:
df

dt
[n] ≈ f [n]− f [n− 1]

Ts

(6.3)

where Ts is the sampling period.

Advantages The backward finite difference has the advantages of being simple to calcu-

late and to implement. That is why this method is often used for preliminary simulation

of behaviour of the system.

Disadvantages This method has both poor convergence and poor stability properties as

soon as the sampling period increases. Furthermore, the energy conservation is usually not

verified.
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Finite difference model of the Moog filter

Since the equations of the filter are only first order, the stability properties of the discretized

model are identical to those of the original continuous-time system (Huovilainen 2004). The

discretization of the equations of one stage (Eq. (2.2)) gives:

vn[m] = vn[m− 1] + ωTs (tanh (vn−1[m])− tanh (vn[m− 1])) for n = 1, 2, 3, 4 (6.4a)

v0[m] = vin[m]− 4rv4[m− 1] (6.4b)

This model unfortunately doesn’t correctly reproduce the phase shift of the Moog filter.

Methods to compensate this shift can be found in papers by Stilson (Stilson and Smith

1996) and Huovilainen (Huovilainen 2004).

6.2.3 Truncated Volterra series

An original use of the Volterra series was introduced for solving weakly nonlinear partial

differential equations (Hélie and Hasler 2004). In the particular case of electronics, this

method could be summarized as a two-step process:

• Calculation of the Volterra expansion of small sub-circuits up to a desired, rather

small order (usually 3), using the differential equations relative to input and output

voltages and the composition laws;

• Calculation of the Volterra expansion of the whole system using the equations relative

to composition of subsystems which Volterra kernels are known up to a certain order.

In this method, the calculations are performed in the Laplace domain.

Composition laws

The three types of composition studied here are the sum, the product and the cascade of 2

subsystems f and g whose kernels are denoted {fn} and {gn} (Fig. 6.1). The composition
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laws that give the global system h ({hn}) are given by (Hélie 2006):

Hn(s1, .., sn) =Fn(s1, .., sn) +Gn(s1, .., sn) (6.5)

Hn(s1, .., sn) =
n−1
∑

p=1

Fp(s1, .., sp)Gn−p(sp+1, .., sn) (6.6)

Hn(s1, .., sn) =

n
∑

p=1

∑

(i1,..,ip)∈I
p
n

Fi1(s1, .., si1)..Fip(si1+..+ip−1+1, .., sn) (6.7)

.Gn−p(s1 + ..+ si1 , .., si1+..+ip−1+1 + ..+ sn)

where I
p
n = {(i1, .., ip) > 0 such that i1 + .. + ip = n}.

(a)

(b) (c)

Fig. 6.1 Types of subsystem composition: (a) cascade, (b) sum, (c) product
(after Hélie 2010)

Volterra model expression for the Moog filter

This model is developed by Hélie (Hélie 2006). Using the composition laws demonstrated

in (Hélie 2010), we can derive the kernels of one stage up to order 5:

F1(s1) = c1QF (s1) (6.8a)

F3(s1, s2, s3) = c3QF (s1 + s2 + s3).[1− F1(s1)F1(s2)F1(s3)] (6.8b)

F5(s1, s2, s3, s4, s5) = QF (s1 + ..+ s5).

[

c5 − c5

5
∏

k=1

F1(sk)

− c3. (F1(s1)F1(s2)F3(s3, s4, s5) + F1(s1)F3(s2, s3, s4)F1(s5) (6.8c)

+F3(s1, s2, s3)F1(s4)F1(s5))]
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where tanhx ≈ c1x + c3x
3 + c5x

5, with {c1 = 1, c3 = −1/3, c5 = 2/15}, and QF (s) =

[c3 + s/ω]−1

The kernels F 4
m for the complete filter without feedback are deduced from the formulas

for cascaded systems (Eq. (6.7)) applied twice (first to get the kernels F 2
m of a two-stage

filter, then to get the kernels of a four-stage filter):

F 2
1 (s1) = [F1(s1)]

2 (6.9a)

F 2
3 (s1, s2, s3) = F1(s1)F1(s2)F1(s3)F3(s1, s2, s3) + F1(s1 + s2 + s3)F3(s1, s2, s3) (6.9b)

F 2
5 (s1, s2, s3, s4, s5) = F1(s1)F1(s2)F1(s3)F1(s4)F1(s5)F5(s1, s2, s3, s4, s5) + ...

F1(s1 + s2 + s3 + s4 + s5)F5(s1, s2, s3, s4, s5) + ...

F3(s1, s2, s3 + s4 + s5)F1(s1)F1(s2)F3(s3, s4, s5) + ... (6.9c)

F3(s1, s2 + s3 + s4, s5)F1(s1)F3(s2, s3, s4)F1(s5) + ...

F3(s1 + s2 + s3, s4, s5)F3(s1, s2, s3)F1(s4)F1(s5)

(6.9d)

and then the same expressions replacing F 2
m by F 4

m and Fm by F 2
m.

Two techniques to extract the kernels for the filter with feedback are presented in two

papers by Hélie (Hélie 2006, 2010).

Practical implementation The formulation in the Laplace domain implies the use of

techniques to numerically compute the multidimensional inverse Laplace transform. An

alternative is suggested by Hélie in building a block based computation scheme based on

the basic block F1 and polynomial function blocks to reproduce the expression in the kernel

equations (Eqs. 6.8 and 6.9).

6.3 Finite difference model study

We first try to use the finite difference model of Huovilainen as a reference to study the

identification techniques. The model contains in its equation some nonlinear functions (the

hyperbolic tangent functions) that should lead to a distorted output signal similar to the

actual Moog filter.
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6.3.1 Sinusoidal excitation

We feed the model with a sinusoidal signal, and, based on the relationship we found in

Section 3.3.1, we set the amplitude at 60mV (amplitude of ∼ 3 and scaling factor of

∼ 0.02). We set the model with a control current at 390mA and a resonance coefficient at

0 and the sinusoid at a frequency of 400Hz (1st test), and 2kHz (2nd test).
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(b) 2nd test

Fig. 6.2 Huovilainen model — Input and output spectra for sinusoidal ex-
citation

We see that the results (Fig. 6.2) correspond qualitatively to the one found in Chapter 3

with high-order distortions before the cutoff frequency and only low-order distortion above

it.

6.3.2 Even-order distortion

If we look at the previous experiment, we see that the sinusoidal excitation produces only

odd-order distortion in the output signal. Thus, it does not correspond to our measurements

in Chapter 3 where significant even-order distortions were present. Observations made

previously in this report provide us with two possible explanations: circuit asymmetries

and DC offset.

Asymmetries As shown in Section 2.3, asymmetries in the filtering stage modify quite

simply the equations. To test this model, we can unbalance the transistor saturation current
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IS to ±1%. This leads to a factor β (see Section 2.3) such that:

β =
1

2
(log(1.01)− log(0.99)) ≈ 0.01 (6.10)

If we modify accordingly the finite difference model in the case of the 1st experiment of

sinusoidal excitation, we get the output spectrum displayed in Fig. 6.3.
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Fig. 6.3 Huovilainen model — Input and output spectra for asymmetric
stages

We see that with asymmetric properties, even-order peaks are clearly visible on the

spectrum, suggesting the importance of component symmetry in the circuit to achieve a

particular nonlinear behaviour.

Input DC offset If we take the equation found in Section 3.3.1 which suggests the

presence of an offset of 1.8mV at the input of the filtering stage, we test the model response

when a signal composed of the sum of a sinusoid and this offset is sent. We get the output

spectrum shown in Fig. 6.4.

In this case too, we notice the presence of even-order components as in the measurements

on the actual system. That means that the presence of the offset could be one of the main

factors responsible for the even distortions we observed on the filter.

Output DC offset In both cases, the output signal of the model has a strong DC

component. That means that the output buffer circuit of the Moog filter would have to
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Fig. 6.4 Huovilainen model — Input and output spectra for input signal
with DC offset

act as a highpass filter in order to remove that offset from the actual output signal of the

Moog filter.

6.3.3 Distortion

We used the signal that we measured at the entrance of the filtering stage on the Moog filter

when we were sending as input a swept-sine signal (Experiment 37). The distortion curves

were then extracted from the output signal of the model; they are presented in Fig. 6.5.
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Fig. 6.5 Huovilainen model — Distortion

As we can see in the figure, the results are very similar to what was observed in Chap-
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ter 3 on the filter output, which means that this discrete model is a quite accurate model

concerning the nonlinear properties of the Moog filter.

6.3.4 Nonlinear identification

Considering the similarity between the distortion behaviour of the numerical model and the

one of the actual Moog filter, we decided to test the identification methods we presented.

Wiener model

We applied the correlation-based identification method for Wiener models. We used a WGN

signal with a standard deviation of 100mV in order to cover the usual sinusoidal excitation

range of the filtering stage. The polynomial coefficients are displayed in Table. 6.1 and the

associated filter in Fig. 6.6.
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Fig. 6.6 Huovilainen model — filter of the Wiener and the Hammerstein
models

As expected for a weakly nonlinear model, most of the behaviour of the system is

extracted form the 1st-order coefficient. However, we see that the error stays constant

and quite high for all identification orders, suggesting that the Wiener structure is not

appropriate for modelling the nonlinearities of the filter.
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Coefficients 1st-order 2nd-order 3rd-order 4-order 5th-order 6th-order 7th-order Error
Model

Order 1 1.0035 - - - - - - 15.73%
Order 2 1.0037 -1.5787 - - - - - 15.72%
Order 3 1.0017 -1.6129 44.7992 - - - - 15.72%
Order 4 1.0042 -3.2576 -17.6636 18206.3842 - - - 15.72%
Order 5 1.0042 -3.2576 -17.6636 18206.3842 0 - - 15.72%
Order 6 1.0042 -3.2576 -17.6636 18206.3842 0 0 - 15.72%
Order 7 1.0042 -3.2576 -17.6636 18206.3842 0 0 0 15.72%

Table 6.1 Huovilainen model — Polynomial coefficients of the Wiener model

Hammerstein model

We performed the identification algorithm for Hammerstein models on the same signals

as for the Wiener model. Results are presented in Table. 6.2 and the associated filter in

Fig. 6.6. It is identical to the filter of the Wiener model since their estimation method is

the same (see Section 5.4).

Coefficients 1st-order 2nd-order 3rd-order 4-order 5th-order 6th-order 7th-order Error
Model

Order 1 1.0034 - - - - - - 15.73%
Order 2 1.0026 0.1007 - - - - - 15.73%
Order 3 1.4107 0.0121 -13.7847 - - - - 15.73%
Order 4 1.4110 0.0711 -13.7850 -1.0085 - - - 15.73%
Order 5 1.6797 -0.0519 -32.1936 0.5394 185.0463 - - 15.73%
Order 6 1.6796 -0.2314 -32.1914 6.6542 185.2601 -41.3837 - 15.73%
Order 7 1.8887 0.0361 -53.5071 -1.8582 628.1667 16.7949 -2209.1729 15.73%

Table 6.2 Huovilainen model — Polynomial coefficients of the Hammerstein
model

Here again, the extraction of high-order coefficients does not improve the identification

of the system suggesting that the Hammerstein model is also not appropriate for this

system.

Polynomial Hammerstein model

Finally, we tested the method for polynomial Hammerstein models. Results are presented

in Table. 6.3 and the associated filter in Fig. 6.7.

In this case, the addition of higher-order components to the model results in significantly

lowering the estimation error. That suggests that the complexity of this model better fits

the behaviour of the system.
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Model Error
Order 1 15.80%
Order 2 15.66%
Order 3 6.19%
Order 4 6.09%
Order 5 3.38%
Order 6 3.36%
Order 7 1.91%

Table 6.3 Huovilainen model — Estimation error of the polynomial Ham-
merstein model
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(b) Even-order filters

Fig. 6.7 Huovilainen model — filters of the polynomial Hammerstein model

Distortion To test the accuracy of the identified model, we ran the same test that we

did earlier (see Section 6.3.3), sending the measured signal to the input of the extracted

system model. The distortion curves are displayed in Fig. 6.8

We can see that except for the noisy behaviour introduced by the error in the estima-

tion of the cross-spectral density and the power spectral density, the general behaviour of

the nonlinear components of the signal fits quite well with what we observed in Fig. 6.5.

This result supports the idea that the complexity of the polynomial Hammerstein model

associated with better identification methods could model quite accurately the Moog filter.

6.4 Nonlinear identification of the Moog ladder filter

After having tested the methods on the numerical model, we made measurements on the

Moog filter using a white Gaussian noise in order to estimate its parameters.

The parameters of the models in this section were identified from the measurements of
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Fig. 6.8 Huovilainen model — Distortion of the polynomial Hammerstein
model

the experiment 44 (see Appendix C).

Input signal The input signal was generated numerically using Matlab and then con-

verted by the DAC. It appears that it is not exactly a Dirac function when we calculate the

autocorrelation of the signal measured at the output of the DAC as it would be for ideal

white Gaussian noise. However, since our methods use an estimated power spectral density

rather than an ideal one, we expect this imperfection not to introduce too significant a

bias.

Order separation It was not possible in our experiments to manage to measure the

output of the filter for different scaled versions of the same noise signal. Indeed, the

inaccurate synchronization between the input emission and the output acquisition (the

acquisition is triggered using an impulse sent on a parallel channel of the DAC), from

generating a scaled version of the signal on the computer did not result in an exactly scaled

output.

Wiener model

We first tested the Wiener model. The identification results are displayed in Table. 6.4 and

the associated filter in Fig. 6.9.
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Fig. 6.9 Moog filter — filter of the Wiener and the Hammerstein models

Coefficients 1st-order 2nd-order 3rd-order 4-order 5th-order 6th-order 7th-order Error
Model

Order 1 0.9999 0.9999 0.9999 1.0000 1.0006 1.0006 0.9999 0.9501%
Order 2 - 0.0045 0.0045 0.0245 0.0234 0.0196 0.0223 0.9501%
Order 3 - - -0.0013 -0.0158 -0.4319 -0.4272 0.2949 0.9501%
Order 4 - - - -3.1132 -2.8909 -1.7074 -2.6511 0.9500%
Order 5 - - - - 38.6443 38.1482 -102.4051 0.9500%
Order 6 - - - - - -73.8571 -10.1192 0.9500%
Order 7 - - - - - - 6524.8667 0.9500%

Table 6.4 Moog filter — Polynomial coefficients of the Wiener model

As we can see, the estimation error is very low. Especially it is much lower than what

we had for the numerical model of the filtering stage.

Hammerstein model

The Hammerstein model of the Moog was derived from the same experiment. The param-

eters of the model are displayed in Table. 6.5 and in Fig. 6.9.

Here again, the identification error was surprisingly much lower than for the numerical

model, and very close to the error found for the Wiener model.

Polynomial Hammerstein model

To improve the complexity of the model, we performed the identification of the polynomial

Hammerstein filters. The filters are displayed in Fig. 6.10 and the error in Table 6.6.



6 Applications to synthesizer circuits 93

Coefficients 1st-order 2nd-order 3rd-order 4-order 5th-order 6th-order 7th-order Error
Model

Order 1 0.9999 0.9999 1.0083 1.0083 1.0090 1.0090 1.0091 0.9501%
Order 2 - -0.0207 -0.0208 -0.0191 -0.0192 -0.0156 -0.0156 0.9444%
Order 3 - - -0.0389 -0.0389 -0.0447 -0.0450 -0.0465 0.9402%
Order 4 - - - -0.0037 -0.0037 -0.0205 -0.0204 0.9402%
Order 5 - - - - 0.0081 0.0085 0.0129 0.9402%
Order 6 - - - - - 0.0161 0.0159 0.9401%
Order 7 - - - - - - -0.0031 0.9401%

Table 6.5 Moog filter — Polynomial coefficients of the Hammerstein model
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(b) Even-order filters

Fig. 6.10 Moog filter — filters of the polynomial Hammerstein model

In this case too, we find a very low estimation error. However, the polynomial Ham-

merstein model seems to improve as we use higher-order model which was not the case for

the previous models. It corresponds to what we already observed on the numerical model,

in the sense that the polynomial Hammerstein model is probably capable of estimating a

large part of the behaviour of the system.

Distortion We test the response of the system to harmonic signals. For this purpose,

the nonlinear behaviour of the model at order 7 for the 2nd- and 3rd-order components

was extracted when we send as input a swept-sine of amplitude σ (Fig 6.11).

We see that the nonlinear behaviour does not fit very well with the real distortion

of the Moog filter. This suggests that the identification method is not robust enough to

approach the weak nonlinearities of the ladder filters with a background measurement noise.

However, we can see that the level of the distortion at low frequencies is very similar. While

the overall identification error is much lower than for the numerical model, we actually lost
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Model Error
Order 1 0.9486%
Order 2 0.9425%
Order 3 0.9377%
Order 4 0.9372%
Order 5 0.9367%
Order 6 0.9366%
Order 7 0.9366%

Table 6.6 Moog filter — Estimation error of the polynomial Hammerstein
model
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(b) Polynomial Hammerstein model

Fig. 6.11 Moog filter — Distortion curves of the polynomial Hammerstein
model (2nd- and 3rd-order)

accuracy related to approximating the nonlinear behaviour that we had for the Huovilainen

model.

Explicit least-squares method

We tested the explicit least-squares method for the polynomial Hammerstein model as

explained in Section. 5.5. The estimation was performed for a system of order 5. The

filters are displayed in Fig. 6.12 and the error in Table 6.7.

Model Error
Order 5 0.9360%

Table 6.7 Moog filter — Estimation error of the polynomial Hammerstein
model using explicit least-squares

We can see on the results that this method shows actual improvement compared to
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(b) Even-order filters

Fig. 6.12 Moog filter — filters of the polynomial Hammerstein model

the correlation-based method. Moreover, the filter estimations seem smoother than in the

previous technique. However, there is still a lot of noise on those estimations compared

to the measured distortion curves. Considering that this estimation is almost 300 times

slower in this experiment and requires significantly more memory, the slight improvement

it provides has to be weighted with these constraints.

Remarks on 1-input model identification

Estimation error As we saw in this section, the identification in the case of the actual

filter has much lower estimation errors. The probable source of this phenomenon is that

the filter was tested at a lower input signal level, resulting in a less significant nonlinear

behaviour. In this case, the estimation of the linear part was enough to fit the filter response

very closely.

Validity range and input voltage range We noticed in our tests using the models that

the estimated parameters can only be considered as valid in a range close to the interval

±σV (σ being the noise standard deviation), while the high-order coefficients will strongly

degrade the model output for larger signals. The problem is then that using as input a noise

signal which has a standard deviation comparable to the possible limit voltage (according to

the filter characteristics) at the input of the filter would mean having a significant number of

samples outside that range resulting in undesirable nonlinear effects due to the saturation

of the different components of our experimental benchmark (digital-to-analog converter,
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filter, acquisition card). Thus, we have to limit ourselves to limits that correspond to quite

low signal level compared to the actual available range on the effect.

High-frequency response The behaviour of the models for high frequencies and for

higher orders of distortion is usually less satisfactory. Possible causes of this behaviour are

the imperfections of the input signal, which is not perfectly white and Gaussian which leads

to accumulated bias as we go up in orders, aliasing, since we are extracting the behaviour

of the system on the whole spectral range (0-48kHz) which means that distortions can fall

above the Nyquist frequency, and problems due to the very small amplitude of the high

powers of a signal of amplitude around 10mV.

6.5 Nonlinear identification of ring modulators

As examples to test the identification methods for 2-input polynomial Hammerstein models,

we tested the algorithms on the two ring modulators presented in Appendix B, the Korg

MS-50 and the Moogerfooger MF-102.

Korg MS-50

Correlation-based method The extraction of the model filters using the correlation-

based method up to order 6 (ie. with polynomial terms of added power lower or equal to

6) has been tested. The filters are displayed in Fig. 6.13 and the error in Table 6.8.
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(b) Filters of the other components

Fig. 6.13 Korg MS-50 ring modulator — filters of the polynomial Hammer-
stein model
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Model Error
Order 1 99.9277%
Order 2 18.2514%
Order 3 18.2464%
Order 4 18.1817%
Order 5 18.1760%
Order 6 18.1553%

Table 6.8 Korg MS-50 ring modulator — Estimation error of the polynomial
Hammerstein model

As expected, the main term of the ring modulator (ie. order (1,1)) corresponds to an

extracted flat filter in the musical spectral range. Moreover, the addition of distortion orders

in the model visibly improves the accuracy of the modelling, especially when expected orders

are added (ie. when we add a new even order). However, this experiment reveals that this

method extracts poorly the low-amplitude terms expected from the experiments presented

in Chapter 3, probably due to the imperfect non-correlation of the involved signals (e.g.

inputs, measurement noise) as well as the low level of the noise input signals.

Explicit least-squares method The explicit least-squares method was tested for order

4. The filters are displayed in Fig. 6.14 and the error in Table 6.9.
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(a) Filters of the expected components
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Fig. 6.14 Korg MS-50 ring modulator — filters of the polynomial Hammer-
stein model using explicit least-squares

As in the case of 1-input systems, this method is an improvement compared to the

previous one. In particular, the filters related to the orders (1,0), (0,1) and (3,1) are clearly

above the other low-magnitude filters. Furthermore, the filter magnitudes are smoother.

This accuracy improvement is confirmed by the error measurement. However, the esti-
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Model Error
Order 4 18.1239%

Table 6.9 Korg MS-50 ring modulator — Estimation error of the polynomial
Hammerstein model using explicit least-squares

mation of low-magnitude terms stays very noisy and is comparable to the estimations of

polynomial members that should be negligible according to the system equations. Here

again, the computation cost of this method is significantly higher than for the previous

case with a computation time multiplied by 100.

Moogerfooger MF-102

The same experiments were performed on the Moogerfooger MF-102. The results for the

correlation-based method are displayed in Fig. 6.15 and in Table 6.10, and for the explicit

least-squares method in Fig. 6.16 and in Table 6.11.
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Fig. 6.15 MF-102 ring modulator — filters of the polynomial Hammerstein
model

Model Error
Order 1 99.9871%
Order 2 31.5870%
Order 3 31.5798%
Order 4 30.1895%
Order 5 30.1788%
Order 6 30.0919%

Table 6.10 MF-102 ring modulator — Estimation error of the polynomial
Hammerstein model
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(a) Filters of the expected components
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(b) Filters of the other components

Fig. 6.16 MF-102 ring modulator — filters of the polynomial Hammerstein
model using explicit least-squares

Model Error
Order 4 30.1474%

Table 6.11 MF-102 ring modulator — Estimation error of the polynomial
Hammerstein model using explicit least-squares

In the experiments (see Chapter 3), the Moogerfooger seemed to add much more dis-

tortion to the output signal. This is confirmed here with much stronger distortion filters

for the order (3,1) and (1,3) than for the Korg MS-50.

Otherwise, the observations made for the Korg stays the same, with the filters from the

expected orders only slightly above or in the middle of the other ones. The smoothing and

the accuracy improvement of the explicit least-squares method is again quite visible.

Remarks on 2-input model identification

Low-magnitude distortion measurement We saw in the measurements made in Sec-

tion 3.4 that the distortion peaks at maximum input amplitude are only about 30 dB

above the measurement noise level at input maximal amplitude. As said before for the

Moog filter, in order to avoid distortion due to the saturation of the different audio systems

involved in the measurement benchmark, the standard deviation of the Gaussian noise is

chosen far below the maximal amplitude allowance, which leads to a much lower distortion

level in the output signal of the actual audio effect. This means that some of the distortion

peaks will fall below the noise level of the system which will constitute a possible source of

inaccuracy in the model identification.
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System asymmetries The filter extraction displays the expected asymmetry that exists

between the two inputs (modulator and carrier) since the filter of order (n,m) is very

different from the one of order (m,n).

Estimation error In this section, even after the extraction of the main component of the

effect (order (1,1)), the error stays quite high (15% for the Korg, 30% for the Moogerfooger).

The reasons of this error are unclear. Possible explanations, other than simple estimation

inaccuracy, include a dependency of the error measurement from the output signal level,

a high signal-to-noise ratio in the experiments and an insufficient number of orders in the

model.

Number of modelled components As we saw in the measurements, only few signif-

icant distortion components below a given order are expected. Then, the algorithm is

extracting numerous orders that are not predicted by either the numerical models or our

measurements. The tradeoff between the added accuracy by these components (demon-

strated by the slightly lower estimation error for models of odd order) and the necessary

computation time required for their extraction needs to be taken into account, choosing

either a complete polynomial model with very large computation costs or a simplified one

with only the few expected components.

6.6 Summary

In this part, we saw that when the electronic circuit drawing of the effect is available,

simple models such as finite difference can already achieve a quite accurate reproduction

of the system distortion for weakly nonlinear systems. However, hypotheses such as linear

input circuitry or perfect characteristics of the electronic components can lead to inaccurate

output simulation.

The single-input identification methods presented in Chapter 3 were tested quite suc-

cessfully on the numerical model of Huovilainen. The results showed that for a system

as complex as the Moog filter, simple models are too inaccurate and we would have to

use parallel or cascade block-based models to extract the nonlinear characteristics of the

system. The estimations on the actual Moog system were promising. Additional measure-

ments using stronger signals could lead to very good modelling of the filter behaviour if we
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use enough complex models such as the polynomial Hammerstein approach. It would be

also interesting to try to model only the transfer function of the input circuitry in order to

get a proper input model for the filtering stage numerical models presented here.

The two-input methods were less successful, but they managed to extract the main

distortion components of the two tested ring modulators. Different options exist to improve

these results and model the complexity of the behaviour of these systems.
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Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis is meant as a preliminary work in the identification of the source of nonlinearities

in common analog synthesizers’ effects and an investigation on the methods available in

literature to approximate the nonlinear behaviour of those systems.

Circuit and nonlinearities The nonlinearities due to the presence of strongly nonlinear

components, such as transistors and diodes, in the electronic circuits has been identified

for a long time as the main source of distortion in analog audio effects (see Chapter 2).

However, as the work of Hoffmann-Burchardi and the experiments presented in Chapter 3

suggest, other audible sources of distortion exist. One could cite the asymmetries present

in circuits due to components which characteristics diverge slightly from their reference

value, or the distortion introduced by pre- and post-processing units in the effects, which

are often ignored in previous studies of those effects.

Nonlinear modelling Two approaches were presented in this thesis, related to two

different approaches of the modelling of a system. The black-box approach (Chapter. 4),

which use very little or no information from the system, has the drawback to require a large

number of parameters that are not always computable in a reasonable amount of time for

strongly nonlinear systems, as we saw in Chapter 5. Yet, this class of methods is capable

of indiscriminately capturing all nonlinearities.

Circuit modelling (Section 6.2) considers the problem from the circuit of the system and
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attempts to extract its behaviour from component models. This method is theoretically

very good since it uses a minimal number of parameters. The drawbacks are the reliance

on component models that are always approximations of the actual transfer functions of

the components, the hypothesis that the components have exactly the reference character-

istics provided by manufacturers, and the approximations necessary to compute the system

response in a reasonable amount of time.

Multi-input systems

Several opportunities to extend the single-input nonlinear analysis to two- and multi-

input systems were presented here, using models such as the polynomial Hammerstein and

correlation-based or least-squares methods. Using the multi-variable Hermite polynomial

family presented in Appendix D, we were able to write the algorithms of this generalized

case. Then, they were tested on two ring modulators with promising results (Section 6.5).

Preliminary comparison results Our preliminary results in Chapter 6 show that it

was possible to qualitatively approach the behaviour of the Moog filter using block-based

models. However, an accurate reproduction of the distortion trajectories that we saw in

the experiments was achieved only in the case of a numerical model, while measurement

noise led to unsatisfactory results for the nonlinear identification on the actual effect. The

two-input methods met similar limitations to extract distortion from the measurements

made on ring modulators.

7.2 Future work

The results presented in this report bring multiple opportunities for improving the under-

standing and the modelling of nonlinear audio circuits.

Distortion factors

We pointed out several important sources of distortion and their qualitative effect in our

experiments and our model testing. A more detailed study of these (such as the influence

of self-oscillation for filters) and other factors (such as the choice of the frequency range on
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the Moog or the influence of the input and output stages on the ring modulators) would

bring a better insight on the system nonlinearities.

Phase and resonance

In this report, we did not study the phase behaviour of the systems and of the different

models explored. It will be necessary to consider these aspects if we want to have a deeper

understanding of the response of filters when there is a non-zero resonance factor since the

phase will affect the position of the resonance peak relative to the filter cutoff frequency.

Identification methods

The cross-correlation-based methods seemed too sensitive to background noise for properly

extracting parameters of the Moog system. The explicit resolution of the least-squares

equation leads to some improvement but requires a significant amount of additional re-

sources. Other methods such as optimized least-square-based methods (Westwick and

Kearney 2003) could lead to better results, and in particular smoother estimated filter,

while having the possibility to extend it to multi-input systems. One could also consider

the use of different types of noise signals with better ratio amplitude/power than the white

Gaussian noise (large amplitude — theoretically infinite — for a relatively limited signal

power).

Alternative models

Only a few models were actually tested on our systems. As we saw, the representations we

chose were not leading to promising results. Alternative solutions could be tested, such as

other block layouts. In particular, it could be interesting to integrate some knowledge that

we have of the circuits in these layout such as separately modelling the input, output and

processing circuits.

7.3 Conclusion

In this thesis, we had a large overview of the different aspects of studying nonlinear audio

effects, from experiments to system modelling and analysis. In this process, we approached

very interesting questions related to this topic.
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Data collection

The literature lacks of experimental studies on such systems. Knowledge about some

particular circuitry behaviour, and the discovery of potential factors such as asymmetric

components could lead to a much better understanding of some features of these systems

that circuit modelling does not approximate correctly. The collection of data on these

systems is a desirable process since less and less of these effects can be found and their

maintenance could become problematic due to component ageing and missing replacement

parts. In particular, a high-quality measurement database of the system output when using

swept-sine and noise input signals could be used as reference for testing the performances

of nonlinear models and identification methods.

Nonlinear modelling

Modelling of the electronic systems using circuit modelling is limited by the access to the

circuitry of effects, and it requires a customized model for each model. Complex nonlinear

black-box models and accurate identification methods are desirable in order to achieve a

more systematic study of available systems. Examples from other fields of research which

are very advanced on the questions of nonlinear modelling, such as the field of biological

systems, could bring a new insight on the available solutions.

Audio effects’ modelling

This thesis fully demonstrated that the tools for accurate reproduction of the nonlinear

characteristics of nonlinear audio effects are available. The recent development and com-

mercialization of numerous virtual analog products proves the interest of the music com-

munity to have access to these vintage sounds. There is no doubt that the domain of study

will keep growing in the upcoming decade, taking advantage of the most recent technical

and scientific progress.
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Appendix A

Electronic components

A.1 Linear elements

Resistor A resistor is characterized by its resistance R (in ohms [Ω]) and the equation

V = R× I (A.1)

Capacitor A capacitor is characterized by its capacitance C (in farads [F]) and the

equation

C
dV

dt
= I (A.2)

Inductor An inductor is characterized by its inductance L (in henries [H]) and the

equation

L
dI

dt
= V (A.3)

A.2 Diode

A very common nonlinear element in analog synthesizer is the diode. It was widely used

before the popularization of transistors for electronics.
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Description A diode is a two-terminal electronic components (Fig. A.1). Its two ter-

minals are called anode (A) and cathode (K). Voltages and currents used in equations are

shown on Fig. A.1.

Fig. A.1 Diode symbol and notations

Characteristics Detailed descriptions of the characteristics of these components can be

found in literature (Sedra and Smith 1997; Tietze and Schenk 2008) (Fig. A.2). For the

purpose of this thesis, we only consider the equation in the forward region (positive v)

(Sedra and Smith 1997):

I = IS

(

e
V

nVT − 1
)

(A.4)

where IS is the saturation current, VT is the temperature voltage, and n is a constant value

depending on the structure of the diode. We assume n = 1.

Since the thermal voltage is quite small (few millivolts), the Eq. (A.4) is often approx-

imated as I ≈ ISe
V

nVT

Materials Today, most of the diodes on the market are made of silicon, but in the 1950’s

and the 1960’s, many diodes were made of germanium, another semiconductor. The main

difference between these two elements appears in the forward voltage VF . It is around 0.7V

for silicon-based diodes while it is more around 0.3V for germanium-based ones.

Remark on temperature influence As we can see in Eq. (A.4), the diode behaviour

depends on the temperature voltage, which is a function of the temperature (Tietze and

Schenk 2008). A common value used in circuit analysis is VT = 26mV to room tempera-

tures. Therefore, this value will be considered as a constant only if the temperature of the

circuit has been stabilized.
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Fig. A.2 Diode I-V relationship in the forward region

A.3 Transistor

Another very common nonlinear element in analog synthesizers is the transistor. They

usually are NPN bipolar junction transistors (BJTs).

Description A BJT is a three-terminal electronic component (Fig. A.3). Its three ter-

minals are called base (B), collector (C) and emitter (E). Voltages and currents used in

equations are shown on Fig. A.3.

Characteristics Detailed descriptions of the characteristics of these components can be

found in literature (Sedra and Smith 1997; Tietze and Schenk 2008). For the purpose of

this thesis, we only consider the large-signal equations (Tietze and Schenk 2008):

IC = ISe
VBE
VT

(

1 +
VCE

VA

)

(A.5)

IB =
IS
B0

e
VBE
VT (A.6)

where IS is the saturation reverse current, VT is the temperature voltage, VA is the early

voltage and B0 is the extrapolated current gain (IC/IB) for VCE = 0.
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Fig. A.3 NPN bipolar junction transistor (BJT) symbol and notations

Remark on temperature influence Here again, we have the presence of the temper-

ature voltage so the remark made for the diode still applies.

A.4 Operational amplifier

The operational voltage amplifier is the most common type of operational amplifier, and

so it is often referred to as simply operational amplifier (OPA). Circuits often make use of

operational voltage amplifiers especially for amplification tasks.

Description An OPA is a three-terminal electronic component. Its three terminals are

called the non-inverting input terminal (P or +), the inverting input terminal (N or -) and

the output (O). Voltages and currents used in equations are shown on Fig. A.4. It also

uses two additional terminals as power supply on a parallel supply circuit that we omit for

convenience.

Characteristics Detailed descriptions of the characteristics of these components can be

found in literature (Sedra and Smith 1997; Tietze and Schenk 2008). For the purpose of

this thesis, we consider that the OPAs are working in their ideal (linear) mode in which

(Sedra and Smith 1997):
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Fig. A.4 Operational amplifier symbol and notations

VO = A(V+ − V−) (A.7)

where A is the differential gain or open-loop gain.

Nonlinear behaviour Operational amplifiers are not linear devices. In particular, when

the differential voltage between the P-input and the N-input goes above a specific level, the

component saturates and the output voltage stays at a defined voltage called the saturation

voltage, which is a strongly nonlinear behaviour. This behaviour can be avoided by using

the operational amplifiers with differential voltages staying in the linear zone.
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Appendix B

Studied synthesizers’ effects

B.1 Moog effects

Moog is a well-known name in the field of analog synthesizers. Since the commercial success

of the Moog modular synthesizer in the late 1960’s, a large family of synthesizers have been

released following this early design and, recently, the Moogerfooger modules have been

released as modernized versions of the first modules. In this appendix, we describe some

of the features of the Moog effects on which we performed our experiments.

B.1.1 Moog 904A Lowpass filter

We briefly present the complete circuit of the Moog 904A Lowpass Filter as it is provided

in the documentation and the circuit drawings (Wyman 1981).

Characteristics

According to Moog documentation (Wyman 1981), the characteristics of the device are:

• Input: impedance 9.2kΩ, nominal level 0dBm (voltage 3.03V), max level 10dBm

• Output: impedance 680Ω, gain 0dB

• Controls: impedance 100kΩ

The control of the filter parameters is done through:

• The control inputs;
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(a)

Moog 904A

Input
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Input
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Processed
input
signal

Filtered
signal

Control
signal

(c)

Fig. B.1 Moog ladder filter 904A — (a) Interface, (b) Simplified diagram,
(c) Block diagram

• The fixed control voltage knob;

• The frequency range switch;

• the regeneration knob.

The characteristics of the filter are the following:

• Cutoff frequency:

– Range: 1Hz < fc < 80kHz
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– Range switch: 3 positions spaced by 2-octave steps (equivalent to 2V in the con-

trol voltage). Range values according to documentation are given in Table B.1

– Response to control inputs: 1 octave/V

– Fixed Control Voltage knob: Adjusts the cutoff over 12-octave span

– Value: fpos 2
VFCV +Vc1+Vc2+Vc3

• Resonance: peak value depending on input level (stronger for low-level inputs)

Position 1 2 3
Minimal cutoff frequency 1Hz 4Hz 16 Hz
Maximal cutoff frequency 5kHz 20kHz 80kHz

Table B.1 Frequency range values for the range switch

Circuit

General structure The Moog filter is composed of 4 main units, the adder circuit, the

input buffer, the output buffer and the ladder filter circuit. The components are put on a

two-layer board. On the first side (Fig. B.2(a)), we find mainly the filtering circuit, and on

the other one (Fig. B.2(b)), the rest of the filter.

Adder circuit The adder circuit (Fig. B.3) performs the adding operation on the three

control input voltages to get a single value of voltage control.

Input buffer The input buffer circuit (Fig. B.4) performs the conditioning of the input

signal. An offset voltage is introduced in the signal sent to the filter stage.

Output buffer The output buffer circuit (Fig. B.5) performs the conditioning of the

output signal, removing the offset voltage.

Filter circuit The filter circuit (Fig. B.6) performs the filtering operation presented in

Section 2.1.3.
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B.1.2 Moogerfooger MF-102 ring modulator

The Moogerfooger MF-102 (Fig. B.7) was released in 1998 too as a two-effect device,

consisting of a low frequency oscillator (LFO) and a ring modulator. The ring modulator

subsection is providing a carrier signal. In this thesis, we have an interest in the two-input

ring modulator subsection so we ignore the features associated with the rest of the device

(LFO and carrier generator. This system is marketed as a descendant of the Moog ring

modulator module.

Characteristics

As in previous subsection, the characteristics of this effect are quite different of the original

module. Indeed, to adapt the change in musical system standards where the reference

voltage at 0dBm (0.775VRMS) has replaced the former reference at 5Vpp.

According to Moog documentation (Wyman 1981), the characteristics of the device are:

• Audio input: impedance 1MΩ, nominal level +4dBm–-16dBm

• Carrier input: nominal level -4dBm (0.5VRMS)

• Output: impedance 600Ω, gain -4dBm

• Controls: not specified

B.2 Korg MS-50 audio effects

The Korg MS-50 is a modular analog synthesizer that was released in 1978. It consists of

various audio effects among which a lowpass filter and a ring modulator. In this appendix

are described some of the features of these two systems that we studied for this thesis.

B.2.1 Ring modulator

The Korg MS-50 has a transistor-based ring modulator (Fig. B.8).

Characteristics

According to Korg documentation (Korg 1978), the characteristics of the device are:
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• Inputs A and B: nominal level 3Vpp

• Output: nominal level 3Vpp

The ring modulator operation is made such that two inputs at nominal level produces

an output at nominal level:

y(t) = xA(t)× xB(t)× 1/3 (B.1)

Circuit

The circuit of the ring modulator (Fig. B.9) is also provided in documentation.
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(a)

(b)

Fig. B.2 Circuit of the Moog lowpass filter
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Fig. B.3 Adder circuit of the Moog lowpass filter
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Fig. B.4 Input buffer circuit of the Moog lowpass filter
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Fig. B.5 Output buffer circuit of the Moog lowpass filter
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Fig. B.6 Filtering circuit of the Moog lowpass filter
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Fig. B.7 Moogerfooger MF-102

Fig. B.8 Ring modulator interface of the Korg MS-50

Fig. B.9 Ring modulator circuit of the Korg MS-50
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Appendix C

Experimental setups

In this appendix, we detail the difference set-ups for the experiments described in Section 3.

In each case, a table gives the different states of the involved systems.

C.1 Moog lowpass filter

For the experiments on the Moog lowpass filter, the signals were emitted by the MOTU

with no pre-amplification.

C.1.1 DC excitation of the filter

For the experiments looking at processing of DC component by the Moog filter, we applied

the settings displayed in Tables C.1 and C.2. Here, we send different DC offset to the filter

input while keeping the control voltage and the filter parameters fixed.

Exp. n◦ Filter settings Control voltage

Volt. knob Freq. range Reson. Type Volt.
1-18 -6V 3 0 DC +4V

Table C.1 Moog filter with DC excitation — Experimental set-ups

C.1.2 Swept-sine excitation of the filter

For the experiments looking at the frequency response of the Moog filter, we applied the

settings displayed in Tables C.3 and C.4. Here, we send a swept-sine signal to the filter
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Exp. n◦ Input signal—1st component Input signal—2nd component

Type Voltage (digital) Type Freq. Digital ampl.
1-9 DC -0.6 to +0.6 - - -

0.15 steps - - -
10-18 DC -0.6 to +0.6 Sine 100Hz 0.1

0.15 steps Sine 100Hz 0.1

Table C.2 Moog filter with DC excitation — Experimental variables

input while changing the control voltage through the second control outlet.

Exp. n◦ Input signal Filter settings Ctrl. volt. 1 Ctrl. volt. 2

Type Digital ampl. Freq. Volt. knob Type Type
19-36 Lin. sweep 0.6 from 100Hz -6V DC DC

to 10kHz over 20s
37-42 Log. sweep 0.6 from 50Hz -6V DC DC

to 5kHz over 20s

Table C.3 Moog filter with swept-sine excitation — Experimental set-ups

Exp. n◦ Filter settings Ctrl. voltage 1 Ctrl. voltage 2

Freq. range Reson. Ampl. Digital ampl.
19-27 2 10 +6V -0.8 to +0.8

0.2 steps
28-36 3 10 +4V -0.8 to +0.8

0.2 steps
37 3 0 +4V -0.4
38 3 0 +4V +0.4
39 3 ∼7 +4V -0.4
40 3 ∼7 +4V +0.4
41 3 10 +4V -0.4
42 3 10 +4V +0.4

Table C.4 Moog filter with swept-sine excitation — Experimental variables

C.1.3 Sinusoidal excitation of the filter

For the experiments looking at the distortion related to amplitude of the Moog filter, we

applied the settings displayed in Tables C.5 and C.6. Here, we send a sinusoid signal with

different frequencies and a logarithmic amplitude envelope to the filter input while keeping

the control voltage and the filter parameters fixed.
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Exp. n◦ Input signal Filter settings Ctrl. voltage

Ampl. envelope Digital ampl. Volt. knob Freq. range Type Ampl.
43 Log. Sweep From 0.05 to 0.5 -6V 3 DC +4V

over 20s

Table C.5 Moog filter with sinusoidal excitation — Experimental set-ups

Exp. n◦ Input signal Filter settings

Type Freq. Reson.
43 Sine 200Hz 0

Table C.6 Moog filter with sinusoidal excitation — Experimental variables

Noise excitation

To identify the parameters of the nonlinear models on the Moog filter, we applied the

settings displayed in Tables C.7 and C.8. Here, we send a white Gaussian noise signal

while keeping the filter parameters and the control voltage fixed.

Exp. n◦ Filter settings Control voltage

Volt. knob Freq. range Reson. Type Volt.
44 -6V 3 0 DC +4V

Table C.7 Moog filter with noise excitation — Experimental set-ups

C.2 Korg MS-50 ring modulator

For the experiments on the Korg ring modulator, the signals were emitted by the MOTU

with a pre-amplification of -3dB.

C.2.1 Sinusoidal excitation of the Korg ring modulator

In this experiment, two sinusoid with different frequencies are sent to one input of the Korg.

The inputs are then reversed. The set-up parameters are displayed in Table C.9.

C.3 Moogerfooger MF-102 ring modulator

For the experiments on the Moog lowpass filter, the signals were emitted by the MOTU

with a pre-amplification of -9dB.
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Exp. n◦ Input signal—1st component

Type Standard deviation (digital)
44 WGN 0.06

Table C.8 Moog filter with noise excitation — Experimental variables

Exp. n◦ Input signal A Input signal A

Type Ampl. (digital) Freq. Type Ampl. (digital) Freq.
45 Sine 0.6 100Hz Sine 0.6 1kHz
46 Sine 0.6 1kHz Sine 0.6 100Hz

Table C.9 Korg ring modulator with sinusoidal excitation — Experimental
variables

C.3.1 Sinusoidal excitation of the MF-102

This experiment is identical to the one performed on the Korg ring modulator. The set-up

parameters are displayed in Table C.10.

Exp. n◦ Input signal A Input signal A

Type Ampl. (digital) Freq. Type Ampl. (digital) Freq.
47 Sine 0.6 100Hz Sine 0.6 1kHz
48 Sine 0.6 1kHz Sine 0.6 100Hz

Table C.10 MF-102 ring modulator with sinusoidal excitation — Experi-
mental variables
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Appendix D

Hermite polynomials

In the context of the identification of polynomial-based nonlinear models based on white

Gaussian noise signals, (statistical) Hermite polynomials are essential. Indeed, they have

the fundamental property to form an orthogonal polynomial basis respectively to the scalar

product weighted by the probability density function of the normal distribution.

D.1 Polynomial expression

On the set of polynomials, if we define the scalar product 〈., .〉1 for the polynomials P and

Q:

〈P,Q〉1 =
∫ +∞

−∞

P (x)Q(x)p(x)dx with p(x) =
1√
2π

e−x2/2 (D.1)

then, an orthogonal polynomial family for that scalar product is called Hermite poly-

nomials. In this thesis, we denote H(m)(x) the Hermite polynomial of order m. These

polynomials are defined as:

H(m)(x) = (−1)mex
2/2 dm

dxm
e−x2/2 (D.2)
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The first Hermite polynomials are given by:

H(0)(x) = 1

H(1)(x) = x

H(2)(x) = x2 − 1

H(3)(x) = x3 − 3x

H(4)(x) = x4 − 6x2 + 3

H(5)(x) = x5 − 10x4 + 15x

. . .

(D.3)

It is also possible to calculate recursively the polynomials using either a one-step recur-

sion involving differentiation:

H(0)(x) = 1

H(m+1)(x) = xH(m)(x)−H(m)′(x)
(D.4)

or a two-step recursion:

H(−1)(x) = 0

H(0)(x) = 1

H(m+1)(x) = xH(m)(x)−mH(m−1)(x)

(D.5)

The Hermite polynomials are not normalized since:

E
[

H(m)(x)H(n)(x)
]

=

∫ +∞

−∞

H(m)(x)H(n)(x)p(x)dx = m!δmn (D.6)

The orthogonality property of the Hermite polynomials is equivalent to say that it

creates an orthogonal basis for the polynomial decomposition of the function of a stationary

white Gaussian noise signal x in the sense that there exists a unique set of coefficients βm

such that:

f (x(t)) =
+∞
∑

m=0

βmH(m)(x(t)) (D.7)
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and

E
[

f(x(t)),H(n)(x(t))
]

= 〈f(x(t)),H(n)(x(t))〉1 = αn (D.8)

This property is not true anymore for other signals.

Normalized Hermite polynomials In particular, the orthogonality property is not true

for signals of non-unitary variance due to the fact that we no longer have E [PQ] = 〈P,Q〉1.
We have:

E [PQ] =
1

σx

√
2π

∫ +∞

−∞

P (x)Q(x)e
− x2

2σ2
x dx (D.9)

which can be rewritten:

E [PQ] =
1√
2π

∫ +∞

−∞

P (σxy)Q(σxy)e
− y2

2 dy (D.10)

Using the terminology proposed by Westwick and Kearney (2003), we define the nor-

malized Hermite polynomials H(m)
N such that in this case:

E
[

H(m)
N H(n)

N

]

= αmδmn (D.11)

with αm chosen such that the term of highest order (m) of H(m)
N is one.

The condition is thus equivalent to:

1

σm
x

H(m)
N (σxy) = H(m)(y) (D.12)

or:

H(m)
N (y) = σm

x H(m)(
y

σx
) (D.13)

and

αm = σ2m
x m! (D.14)

D.2 Extension for multi-variable polynomials

To work on parameter extraction for multi-input systems, we want to identify nonlinear

transfer function using independent white Gaussian noise signals.
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D.2.1 Two-variable case

Let’s have two independent variables x1 and x2, the probability density function of the

system has the property:

p(x1, x2) = p1(x1)p2(x2) (D.15)

For two zero-mean unitary-variance white Gaussian noises, we have:

p1(x) = p2(x) =
1√
2π

e−x2/2 (D.16)

From this, we can define a scalar product for two-variable polynomials 〈., .〉2 using the

weight function p:

〈P,Q〉2 =
∫ +∞

−∞

∫ +∞

−∞

P (x1, x2)Q(x1, x2)p(x1, x2)dx1dx2 (D.17)

with:

p(x1, x2) =
1

2π
e−x2

1/2e−x2
2/2 (D.18)

To define a family of polynomials that, as the single-variable Hermite polynomials, will

be orthogonal for white Gaussian noise inputs, we need to verify the condition:

〈H(m,p)(x1, x2),H(n,q)(x1, x2)〉2 =
1

2π

∫ +∞

−∞

∫ +∞

−∞

H(m,p)(x1, x2)H(n,q)(x1, x2)e
−x21
2 e

−x22
2 dx1dx2

= αm,pδm,nδp,q

(D.19)

The other condition is that the polynomial with index (m, p) contains the term xmyp

with coefficient 1.

We see that the scalar product used in Eq. (D.19) has the property to be decoupled

between the two variables, so that we can write it:

〈P,Q〉2 = 〈〈P,Q〉x1
1 〉x2

1 (D.20)

So in the case where P and Q are separable, which means that it exists four polynomials

P1, P2, Q1 and Q2 such that P (x1, x2) = P1(x1)P2(x2) and Q(x1, x2) = Q1(x1)Q2(x2), we
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have:

〈P,Q〉2 = 〈P1, Q1〉1〈P2, Q2〉1 (D.21)

With this observation, and knowing that the single-input Hermite polynomials are or-

thogonal for the scalar product 〈., .〉1, we can see that the two-input Hermite polynomials

can be built as separable using the equation:

H(m,p)(x1, x2) = H(m)(x1)H(p)(x2) (D.22)

which leads to:

〈H(m,p)(x1, x2),H(n,q)(x1, x2)〉2 = 〈H(m)(x1),H(n)(x1)〉1〈H(p)(x2),H(q)(x2)〉1
= m!δm,np!δp,q

(D.23)

which corresponds to the condition defined in Eq. (D.23) with αm,p = m!p!.

The first two-input Hermite polynomials are given by:

H(0,0)(x1, x2) = 1

H(1,0)(x1, x2) = x1

H(0,1)(x1, x2) = x2

H(2,0)(x1, x2) = x2
1 − 1

H(1,1)(x1, x2) = x1x2

H(0,2)(x1, x2) = x2
2 − 1

H(3,0)(x1, x2) = x3
1 − 3x1

H(2,1)(x1, x2) = x2
1x2 − x2

H(1,2)(x1, x2) = x1x
2
2 − x1

H(0,3)(x1, x2) = x3
2 − 3x2

. . .

(D.24)

Normalized Hermite polynomials As in the case of a single variable, the Hermite

polynomials are no longer orthogonal if the variance of each signal is non-unitary. Again,
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we can define the two-input normalized Hermite polynomials as:

H(m,p)
N (x1, x2) = σm

x1
σp
x2
H(m,p)

(

x1

σx1

,
x2

σx2

)

(D.25)

D.2.2 N-variable case

Following the same process, we see that in the case of N independent white Gaussian noise

variables, we will have a family of N -variable Hermite polynomials such that:

H(m1,..,mN )(x1, .., xN ) = H(m1)(x1) . . .H(mN )(xN) (D.26)

and for the normalized case:

H(m1,..,mN )
N (x1, .., xN ) = σm1

x1
. . . σmN

xN
H(m1,..,mN )

N

(

x1

σx1

, ..,
xN

σxN

)

(D.27)
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