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Abstract 

This thesis investigates the possibility of exploiting haptic force-feedback technology for 

interacting with virtual musical instruments. A survey of current software solutions for 

creating haptic virtual environments is provided, with a discussion on the need to integrate 

such a platform with currently accepted solutions for audio research. 

A system was developed to combine a haptic programming library with a physical dy

namics engine and to expose its functionality through the Open Sound Control (OSC) 

protocol, an increasingly accepted standard for communication within the audio software 

and hardware domain. Using OSC messaging, simple 3D objects can be instantiated and 

constraints on their movement can be specified, allowing the description of physically dy

namic mechanisms. Collision events as weIl as properties of the objects can be transmitted 

to the audio system continually to be used for modulating audio synthesis parameters. 

Some examples of simple virtual musical instruments created with the aid of this system 

are provided. 
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Resumé 

Ce rapport de thèse examine la possibilité d'utiliser la technologie haptique basée sur 

le retour d'effort dans l'intéraction avec des instruments de musique virtuels. La revue 

des logiciels courants pour la création d'environnements de réalité virtuelle incluant des 

sensations haptiques a montré un manque de prise en compte fonctionnalités audio. Il 

est discuté le besoin de faire un lien avec les logiciels utilisés couramment en recherche 

acoustique. 

Un système a été créé pour combiner les fonctions d'un logiciel d'haptique et d'un mo

teur physique, en exposant leurs fonctionnalités à l'aide du protocole Open Sound Control 

(OSC), un standard de plus en plus utilisé pour la communication entres systèmes d'audio 

logiciels ainsi que matériels. Des objects simples en trois dimensions peuvent ansi être 

créés et soumis à des contraintes de déplacement, permettant la description de mécanismes 

physiques. Les propriétés de ces abjects peuvent êtres manipulés sur une base d'évènements 

ou d'actions continuelles, et être utilisés pour controller les paramètres de synthèse sonore. 

Quelques exemples d'instruments musicaux virtuels sont implémentés à l'aide de ce système 

à titre d'illustration. 
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Chapter 1 

Introduction 

1.1 The Haptic Sense 

It has been known for sorne time that the feel of a instrument plays an important role in 

a musician's ability to learn and to play it [71]. Indeed, our ability to feel the surrounding 

environment, our tactual, or haptic sense, is used constantly in our daily interactions with 

the world. The sense of touch can be roughly divided into two general categories: the tactile 

or cutaneous sense, which aIlows us to feel textures, vibrations, and temperature differentials; 

and the kinesthetic sense, also called force feedback, which allows us to internally feel the 

positions of our limbs through feedback from our muscles, as weIl as to externaIly feel the 

resistance that an object exerts on our muscles [10]. 

The synthesis of haptic feedback in the digital domain, what Gillespie [33] described 

as "computer mediated emulation of mechanical impedance," is of growing interest to 

researchers in virtual reality. Visu al and audit ory feedback have seen much attention in 

the last few decades; despite having had sorne attention as early as the late 1970's [13], 

comparatively speaking, haptics is still a young field. This is largely due to, though certainly 

not restricted to, the mechanical and computational demands of haptic display. However, 

the results are worthwhile: the combination of haptics with audio and visual feedback, a 

so-called multi-modal display, provides a far more immersive virtual experience for a user 

than a display providing only one or two sensory modes [10]. Additionally, the haptic 

channel can provide a means of communicating state information to the user of a device 

without relying on or interrupting visu al or auditory streams [39]. 
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1.2 Gestural Controllers and Virtual Musical Instruments 

Ever since the introduction of electronics into the musical domain, musicians and re

searchers have struggled to find convenient ways to provide control for electronics that 

are more intuitive than the traditional knobs, sliders, mice and keyboards that have be

come ubiquitous in the digital era. It has been recognized that the instrumental gesture 

is key to the expressive production of sound. Cadoz [11] claimed that the instrumental 

gesture is inseparable from the sound, and that it in fact defines the sound. 

Correspondingly, an impressive number of controllers have been built in the last few 

decades that aIl make an attempt to extract gestural information for use in sound synthesis. 

Mulder [63] summarized these into categories such as "touch controllers", "expanded range 

controllers", and "immersive controllers". Other terms have been used such as "hands-free" 

[62] or "open-air" [80] controllers. AlI of these use sorne form of sensing to transduce human 

movement into digital signaIs which can control sound synthesis algorithms. Wanderley and 

Depalle [94] considered that the combination of a gestural controUer and a sound synthesis, 

two processes that traditionally have an inherent relationship for acoustic instruments, can 

be thought of as a single unit termed a digital musical instrument (DMI). 

While gestural controllers have been able to help restore a relationship between in

strumental gesture and sound synthesis, this relationship is arbitrated by a mapping layer 

between controUer output parameters and synthesis inputs. Development of this mapping 

layer is not necessarily trivial, and is an important part of the DMI [42]. The task of 

creating andperfecting it can be a long process consisting of constant feedback between 

performer, instrument, and designer [53]. 

Citing the difficulty of adapting physically-based gestural controllers to the needs of 

different performers, Mulder [61] proposed that the DMI should be abstracted by one 

more level. He suggested that a virtual musical instrument (VMI)-a gestural controUer 

defined in software-would be the most flexible controller possible, and would allow gestural 

access to "aIl possible audible sounds". While somewhat understating the difficulties of 

implementing a generalized software-based controller paradigm that would allow unlimited 

access to an arbitrary parameter space, the idea that Mulder was proposing was quite 

sound: the introduction of a new mapping layer from the physical controUer to a virtual 

controller, which would in turn have outputs mapped to a sound synthesis engine. In 

particular for "hands free" controllers, like the datagloves used by Mulder for the control of 
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Fig. 1.1 Axel Mulder demonstrating glove-based interaction with a virtual 
musical instrument, developed with Sidney Fels and Kenji Mase, at Kansei
The Technology of Emotion Workshop in 1997, Genova, Italy [64], from Trends 
in Gestural Control of Music [63J. A close-up of the "rubber sheet" object is 
seen on the right-hand side, from [61J. Both images are reproduced here with 
permission. 

3 

his VMI, the extra abstraction layer enabled a performer to use metaphor to help visualize 

the control surface of an instrument that he could not actually touch. (See Figure 1.1 for a 

picture of Mulder playing a virtual instruments.) This created a meaningful and concrete 

mapping between hands-free gestures in three dimensions to a virtual space which could 

allow fewer or more degrees of freedom than the physical controller could actually provide. 

ln other words, the VMI helped to provide a semantic grounding to an otherwise arbitrary 

many-to-many relationship between controller and sound. 

1.3 Force-Feedback Displays as the VMI Physical Layer 

1 will now review sorne applications of haptic display, and discuss how similar ideas might 

be applied to musical purposes. Salisbury [82] proposed several uses for force-feedback hap

tics: seismic modeling, virtual prototyping, shape sculpting (for 3D modeling), molecular 

docking, and surgical simulation and training. Many of these ends have since been pur

sued. To date, force-feedback has found its way into gaming devices, rehabilitation for the 

visually impaired, desktop user interfaces, visual art (painting and 3D modeling,) surgical 

simulation and telesurgery, and virtual prototyping of CAD designs [46]. It has also been 
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used in music research [13, 29, 66, 72, 90J, which will be discussed in depth in the next 

chapter. 

Generally speaking, force-feedback haptics sees many uses in areas involving virtual 

reality. This is because force feedback requires direct user interaction for display. In order 

to "display" something, the end effector of a haptic device must be moved by the user so 

that it can be repelled. As the user explores by probing with the end effector, consistancy 

in the "force field" can give an idea of a solid object. The implication is that in order 

to provide force feedback, sorne idea of what is being displayed is usually modeled by the 

computer-a virtual environment. 

Thinking back to gestural interfaces, a controller is simply an object to be manipu

lated by a user, so that instrumental gestures can be transformed into sound. As Mulder 

showed, the controller itself can be virtualized in a similar way that a CAD design can be 

manipulated on the computer before being built, or your left knee can be simulated for 

surgical training. With force feedback getting so much attention in these applications, it 

seems natural to think about how it could be similarly applied to create a more immersive 

VMI experience. 

Mulder stated repeatedly in his dissertation that his VMI unfortunately lacked tactual 

feedback [62]. He used a pair of input devices called datagloves which could sense the 

position of each hand in space as weIl as the bend of each finger. Using deformable physical 

models computed in Max/FTS, users could use their hands to push and pull on the VMI 

shapes, which changed corresponding sound parameters in real time. At the time, no glove

based haptic devices were available, so datagloves could only provide sensing capabilities. 

Consequently, users depended entirely on a visual display and the audit ory feedback to 

orient themselves in the virtual environment and accurately perceive the metaphor they 

were manipulatirig. 

Today, it is possible to purchase datagloves that allow sorne form of force feedback. 1 

However, the problems of actuating the many degrees of freedom in the human hand in a 

comfortable manner make such devices heavy and prohibitively expensive. Instead, another 

class of haptic displays, so-called "pen-based displays," have seen a much wider adoption by 

the commercial market. Pen-based force-feedback hand controllers ranging in capabilities 

are now developed and sold by at least 5 different manufacturers [28, 32, 60, 67, 84]. 

Examples of interaction with a pen-based display can be seen in the figures in Chapter 4. 

lThe CyberGrasp from Immersion, for example. 
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This market competition has reduced the price of force-reflecting 3D manipulators to levels 

that are becoming more affordable. Thus, although they are mostly limited to interaction 

with a single point in space, pen-based displays are an excellent starting point for exploiting 

force-feedback haptics in VMI interaction. 

1.4 Motivation and Requirements for a Haptic VMI 

Implementation 

Mulder's main reason for developing the VMI concept was to create infinitely adaptable 

musical interfaces, but in fact the uses of VMI's, and particularly haptic VMI's, are actually 

more numerous. From the perspective of musical research, we are interested in exploring 

what kind of a role the kinesthetic and tactile sense plays in musical interaction. By 

virtualising the gestural control, it becomes possible to adjust various aspects of haptic 

feedback in ways that would be impossible with a "real" interface, or even to turn it off 

completely. With the "feel" of an instrument being variable, we can approach the problem 

of musical kinesthetics in a properly scientific manner. For instance, haptic parameters such 

as stiffness, texture, friction, and latency can be modified. A VMI could be played with 

and without haptic or visual feedback to examine how the presence of a particular sensory 

mode affects learning and playability. In addition, several haptic "effects" developed in Hel 

research can be exploited [68]: gravit y wells, constrained movement, and vibrotactile cues 

can be created. Simulations of traditional musical interactions can be achieved, such as 

bowing, tapping, and plucking. Using physical dynamics, musical instruments that exploit 

object interaction and movement could be created. 

From an industry perspective, there is a need for methods for evaluating and comparing 

haptic devices. Performance measures for haptic devices are currently known [38], but 

designing corn mon tests for these measures is an ongoing task. In particular, determining 

how the needs of haptics for music may differ from, say, surgi cal applications may help 

to find VMI that are suit able for testing certain aspects of new haptic devices. Finding 

expert musicians willing to participate in such experiments should prove more convenient 

than surgeons, making comparison testing easier. 

With these purposes in mind, it can be specified what sort of features to look for in 

a good VMI implementation. Firstly, since several audio environments are available for 

real-time sound synthesis, easy integration with these programs is desirable. Secondly, for 
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the purposes of constructing experiments it is important to offer a wide variety of haptic 

effects with variable parameters. To establish a virtual controller metaphor, these haptic 

effects must be associated with objects in a virtual environment, which can be manipulated 

by sorne input device. Thirdly, the availability of a physical dynamics engine is desirable 

for creating mechanisms which can react realistically to user input. 

1.5 Summary 

This chapter has discussed the background, motivation, and requirements for creating a 

haptically-enabled virtual reality environment which can communicate with an audio sys

tem in order to design virtual musical instruments which can be touched and manipulated 

by a user. The remainder of this thesis will discuss the implementation of such an en

vironment in more details. Chapter 2 discusses previous work in audio-enabled virtual 

environments with and without haptic feedback, as weIl as previous research in the use of 

haptics for studying musical interaction. Chapter 3 contains a survey of software currently 

available for the development of haptics and virtual environments. Chapter 4 provides 

details of DIMPLE, a tool for the creation of VMI's controllable from within existing audio 

software, and describes sorne examples of instruments that have been created with it to 

date. Chapter 5 gives sorne conclusions and ideas for future work with the system. 
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Chapter 2 

Background 

This chapter di sc us ses several previous works on force-feedback in musical interaction and 

on the development of virtual musical instruments. As we will see, a large amount of 

attention has particularly been given to the simulation of the bowing gesture. The feel of 

the piano action has also been extensively investigated. In general, significant focus has 

been put on creating physically accurate simulations of particular real-world instrumental 

interactions. 

2.1 Previous work on force-feedback haptics in gestural control 

of music 

2.1.1 ACROE 

As we have discussed, Cadoz [11] proposed that instrumental gestures are accompanied 

by inherent haptic feedback. Wh en a musician blows a horn, bows, or plucks a string, he 

feels the tension and release of pressure in the instrument, and feels the vibration of the 

resonating body in his limbs and torso. This feedback helps him to control the instrument 

accurately, and consequently its sound. Cadoz, Florens and colleagues at ACROE set 

out to create a computer-controlled device that could recreate the feel and sound of an 

instrument. Called a Transducteur Gestuel Rétroactif, or Retroactive Gestural Transducer 

system (TGR) , this project involved the design of special motors, dedicated processors, and 

a modular mechnical system that eventually resulted in the Modular Feedback Keyboard 

(MFK) [13], now commercialized as the ERGOS device [28]. The modularity of the design 
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Fig. 2.1 A gestural interaction with the TGR. The user manipulates the 
circle and can feel the object inside when it coUides with the sides. The 
vibrations of the object give rise to audio feedback. From Trends in Gestural 
Control of Music [12], reproduced here with permission. 

8 

allows the mechanical coupling of motors and the interchange of end effectors to create a 

haptic display with configurable grips and variable degrees of freedom (DOF). In addition 

to functioning as an actuated keyboard, motions such as bowing and squeezing can be 

achieved, as weIl as general 3- or 6-DOF point manipulation. See Figure 2.1 for a picture 

of the TGR in action. 

Sorne models created with the device include a virtual violin [30], and a child's rattle 

[31]. These two models were expressed using the CORDIS-ANIMA formalism for physical 

modeling [14]. This language allows the description of a physical system, which can then 

be used to interact haptically, generate sound, and be viewed graphicaIly. 

In the violin model, the gesture interface, a 3-DOF "horizontal joystick" extended from 

the MFK keys controls the exciter portion of the model. The exciter is connected to a non

linear links block which represents the bow-string interaction, and this in turn is connected 

to a mass-spring model of a string, which can also be replaced by a modal string model. The 

CORDIS-ANIMA language allows a minimal and exact description of the physical system. 

It is discussed further in Section 3.1.8. Florens reports that the model has a narrower 

"space" than a real violin, referring to "the pitch space, the bowing space and the dynamic 



2 Background 9 

of the possible and pertinent bow pressure variations," but that within the playable region 

the similarity to the real interaction is "striking". By playing with the physical parameters, 

especially the gesture coupling scale factors, he found that the most comfortable situation 

corresponds to, '''light' strings that provide a tiny but non-null friction force." 

2.1.2 The Touchback Keyboard 

Gillespie [33] used a force-feedback system to emulate the action of a grand piano. Com

monly, pianists found that the system of weights and dashpots incorporated into electronic 

pianos were not similar enough to the feel of a traditional piano. While pianists can tech

nically only control the timing and hammer velo city resulting from a key hit, they can 

pro duce a range of timbraI effects by finely manipulating these parameters. To achieve 

such control, they place high importance on the "touch" of a piano key, which includes not 

only the weight, but also a sensation of the underlying mechanism, including the sudden 

release or "let-off" of the hammer. Gillespie's solution was to simulate the haptic feedback 

in a piano using digital motor-control algorithms based on a physical model of the piano 

action. He created the Touchback Keyboard as a result, an 8-key actuated keyboard. 1 His 

work encompassed a proposed solution to guarantee passivity in the rendering of a virtual 

wall, a problem which has application across the entire domain of digital haptic display. 

Oboe and Poli [69] later created MIKEY, the multi-instrument active keyboard, an 

attempt to improve Gillespie's simplification of the grand piano action, as weIl as to emulate 

the action of a harpsichord and a Hammond organ. They made use of low-cost electronics 

to show that it is possible to create such an instrument in a cost-effective manner. 

2.1.3 Bowing the Moose 

O'Modhrain [71] set out to discover whether haptic feedback was critical to musical per

formance, and if so, whether it is ingrained in a player's internaI representation of the 

instrument. It was observed that a Theremin, an early "hands free" instrument using 

electric field sensing to allow hand proximity to control pitch, seemed to be easier to play 

when the player's hand was attached to the antenna with an elastic band. Seeing that 

the presence of a position-dependent force could help in performance, she proceeded to 

1 It should be noted that he credits Max Mathews as drawing the first sketch of a solenoid-driven actuated 
key in 1988. 
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perform several studies on the playability of a Theremin-like sound under various force 

feedback conditions. The device they used was a 2-DOF force-feedback controller called 

the Moose, developed by Gillespie and O'Modhrain [34]. It was originally intended as an 

interface to allow blind persons access to two-dimensional graphical user interfaces. The 

study tested severallinear mappings between pitch and force. Included conditions were: no 

force, positive and negative constant force, positive and negative spring force, and viscous 

force. (The last is a change in force related. to velocity.) 

They found that playing accuracy was better in aIl force conditions than without force. 

AdditionaIly, they found, marginaIly, that the best playing accuracy was in the positive 

spring condition, where force linearly increased according to pitch. N ext they performed 

another study, this time aIlowing subjects to practice the melody several times. The intent 

was to discover whether force only helped in the learning stages of playing an instrument, 

or if it had a lasting effect. Their results showed that players became accustomed to the 

force condition, and tended to overestimate their movements if the force was subsequently 

removed. 

The second phase of experiments was to study the bowing gesture. The violin is an 

instrument shown to provide vibrational feedback through the left hand, which fingers 

the strings, through the neck and upper body, which are in contact with the instrument 's 

resonating body, and through the right hand, which holds the bow. They implemented 

a friction model for the tactile response of the bow hand based on research by Hayward 

and Armstrong [37], excited by lateral movement of the end effector against a virtual wall, 

which attempted to simulate the stick-slip motion of bow-string interaction. Excitation 

was accompanied by a physicaIly modeled string sound. In the experiment, subjects were 

asked to try and reproduce pre-recorded bow strokes. Results were compared analyticaIly 

as weIl as by expert judges. 

Strangely, they found that novice players performed the same with and without friction, 

while expert performers performed worse in the presence of friction, despite the fact that aIl 

subjects reported preference for the friction condition. The conclusion was that the friction 
model was not similar enough to the real bow-string interaction, so that it confused players. 

Another conclusion one might draw is that perhaps friction plays less of a critical part 

in the interaction than simply the perpendicular resistance to bow pressure. If the feeling 

of pressing against a virtual wall was enough to inform players of their instrumental effort, 

it is possible that lateral vibrations only serve to make the gesture more satisfying, but do 
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not add any extra information to the interaction. It may be interesting to perform further 

comparisons under different types of friction conditions. Additionally, the 2-DOF device 

did not allow investigation of the role of torque, as discussed in Section 2.4.4, which is likely 

an important component of the bowing gesture. 

Relevant to this thesis are some comments in O'Modhrain's conclusion: firstly, she 

discusses sorne problems with attempting to control audio and haptic responses with a single 

process, stating her reasons for choosing parallel processes that communicate information 

over a MIDI connection. This is relevant to similar design decisions made for our system, 

discussed in Section 4.4. Secondly, she remarks on the need for a hierarchical control 

protocol for transmitting gestural information. Again, this relates directly to our decision 

to use the Open Sound Control protocol for communication with virtual environments. 

Lastly, she mentions the need for a "development environment for haptic feedback," which 

would allow for substitution of hardware components and easy access to haptic primitives 

such as springs, dam pers , and friction effects. This has precisely been the goal of the work 

discussed in Chapter 4, through the use of objects, properties, and constraints. 

2.1.4 Nichols' vBow 

Inspired by personal musical needs, as well as by the work of O'Modhrain described above, 

Nichols [66] created the vBow, a motorized bowing machine used to simulate the stick-slip 

friction of a bowed instrument. The first version of the vBow featured only one lateral 

degree of freedom. A wire along the "bow" , representing the hair, was attached to a single 

motor and encoder, so that motion along this length could be detected and opposing force 

could be applied. Subsequent versions supported the addition of rotational, vertical, and 

longitudinal motion, essentially turning it into a seriaI robotic arm. 

The vBow controls a bowed string physical model designed by Serafin et al. [86]. Citing 

a large body of work on mathematical modeling of the physical interaction between bow 

and string, it was made clear that this complex and subtle interface would be difficult to 

simulate with perfect accuracy. The model used had previously been tested with a Wacom 

pen tablet input device [85]. 

An accompanying haptic model is also controlled by the software. Haptic feedback 

includes "friction and vibration for the lateral motion, detents for the rotational motion, 

elasticity for the vertical motion, and friction for the longitudinal motion." The vibration 
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felt through the lateral servomotor is simply a scaled-down copy of the sound synthesis 

output. On both lateral and longitudinal motions, friction is also felt which is a random

ized function that emulates interactions with micro-imperfections in the hair, resulting in 

a feeling of "non-periodic roughness." The "detent" simulation-the simulation of the bow 

rolling across the violin strings-is accomplished by providing force feedback in the rota

tional direction as the cable passes over the location of the simulated strings. A series 

of "slices", non-linear divisions of the rotational dimension, are used to simulate rolling 

over each of the 4 strings. Finally, the combined ela,sticity of the string and bow hair is 

simulated by a linear spring model in the vertical direction. This model allows the player 

to feel the tension in the string. 

Nichols describes several potential uses for the vBow, including the "bowing" of other 

types of sound synthesis models, and experimentation with different types of haptic feed

back. Simulating different hair and string materials and unusual configurations of strings 

is suggested. 

2.2 Other studies of synthetic tactual feedback for control of 

sound 

2.2.1 Vibrotactile feedback 

Chafe [15] showed that introducing vibrotactile feedback into a gestural controller can help 

in maintaining accurate control over the playing of an "unpredictable" physical modelling 

synthesis. The term vibrotactile feedback can refer to any oscillation felt by the player's 

body as he plays an instrument. In the gestural controller literature, it is most often used 

to refer to the playback of the audio signal through a vibrating actuator attached to the 

body of the controller. In Chafe's case, he attached a voice coil actuator and a strain gauge 

to a metal bar, which was used to control a wind instrument physical model. The chosen 

physical model had a "lip tension" parameter, which was mapped to the strain gauge, and 

consequently to the deformation of the met al. In a traditional wind instrument, the player 

uses lip tension to control a sound, but also senses the instrument's vibration through his 

lips. Correspondingly, it was found that when players could feel the sound through the 

voice coil, they found it easier to play the instrument: specifically, they could more easily 

determine when the physical model was about to become "unpredictable" , and temper their 
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playing accordingly. Interestingly, Chafe discussed how the pitches of notes were entirely 

above the frequency range of the human tactile sense. However, on transitions between 

notes, a brief period of overlap caused subharmonics which could be felt. 

Further efforts to explore vibrotactile feedback in gestural controllers include Bongers 

[9], who described several uses for tactile dis play in music, and Rovan and Hayward [80], 

who explored the use of tactile feedback to deliver cu es for open-air controllers. The Touch 

Flute [8]and the Viblotar and Vibloslide [55] are sorne examples of controllers built at 

McGill for exploring vibrotactile feedback. Marshall and Wanderley [55] also give a good 

overview of the effectiveness of various types of actuators for vibration, with reference to 

the frequency ranges of the human tactile sense. 

2.2.2 Force feedback 

DiFilippo and Pai [26] created "AH l" : an audio-haptic interface using a modified version 

of the Pantograph device based on a design by Ramstein and Hayward [76] at McGill, 

and used a dedicated microcontroller to simulate physical collisions with very low latency 

between audio and haptic responses. The device was a 3-DOF input device, with two linear 

directions and one rotational direction. (The original Pantograph lacked the rotational 

direction.) It could be used for simulating non-centered or multi-point contact with two 

dimensional bodies in a planar environment; however, the authors did not make use of 

the rotational DOF-the study was strictly on single-point contact with a virtual wall. 

Audio responses consisted of a convolution-based modal synthesis. Because, similar to 

ACROE's approach, they used a single dedicated DSP for synthesizing haptic and audio 

feedback, they were able to create latency below 1 ms. Unlike Adelstein et al. [2], they 

aimed not to determine the JND of audio-haptic latency, but rather to verify that a positive 

or negative 2 ms delay would be a valid lower bound for human perceptual tolerance of 

synchronization latency. By varying the delay between haptic and audio responses they 

were able to determine that this is indeed the case. Specifically, they verified that there 

was no perceptual difference betwen 0.5 and 2 ms of delay, though the rate of decay of the 

sound had an effect on this perception. See Section 4.3 for a discussion on the topic of 

audio-haptic latency. 

Feasel [29] did an unpublished but well-documented class project for Prof. Ming C. 

Lin involving a 3-DOF SensAble PHANTOM Omni device for plucking physically modeled 
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strings. He performed an analysis of guitar pick-string interaction and implemented a 

simplified model of it using the SensAble GHOST SDK. He reported that the interface is 

playable, though it takes sorne practice. The main problems he encountered were sorne 

difficulty in computing the device's handle orientation and the lack of rotational force 

feedback. The need for device torque is discussed further in Section 2.4.4. 

FoleyAutomatic, created by van den Doel et al. [90], is a physically modeled audio

visual simulation of typical interactions used in the creation of sound effects. In particular, 

the authors modeled not only impact sounds, but also rolling and sliding interactions. 

The approach was to use modal resonance models for synthesis, and stimulate them using 

stochastic models of fine-grained interaction. They modeled a rock in a wok, which is a 

typical set-up for foley artists, as weIl as a screwdriver-bell interaction. The focus was on 

producing convincing sound effects by utilizing physically modeled environments, but there 

was little discussion on the importance of intuitive gestural control for such a system. There 

was, however, a brief mention of using a PHANTOM device to control the screwdriver, so 

that the edges of the bell could be felt. 

Howard et al. [41] created Cymatic, another approach to physical modeling, partly 

inspired by CORDIS-ANIMA. A Cymatic instrument is constructed of masses and springs. 

A library of components is available, which are objects in 1, 2, 3, or more dimensions, and 

thus instruments that could not exist in reality can be constructed. As with CORDIS

ANIMA, virtual microphones can be placed on Cymatic masses so that the movement of 

a mass is turned into an audio signal. Tactile and force feedback can be provided through 

actuated joystick and mouse interfaces. Such an interface can be used to bow a Cymatic 

element. Alternatively, microphone input can be used to excite a mass, causing incident 

vibrations in connected masses. 

2.2.3 Various musical haptic de vi ces 

Verplank et al. [91] created the Plank, a haptic controller specifically designed for scanned 
synthesis [93]. The ide a behind scanned synthesis is to manipulate a two-dimensional curve 

representing a string at a slow rate, termed the "haptic rate" by Verplank, referring to the 

speed of human muscles. The curve is simultaneously played as the kernel of a wavetable 

synthesis at the audio rate. The Plank was built from an old hard drive motor, featured 

a Hall-effect sensor for position, and used a force-sensing resistor for determining pressure. 
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The user could hold the "plank" with his hand and move it left and right. Applying 

pressure to the FSR would create indentations or otherwise perturb the string model, 

creating changes in timbre. The motor could resist the left-right movement so as to create 

the impression of feeling bumps in the surface of the wave. 2 

Later, Verplank [92] enumerated a set of simple haptic musical gestures such as pluck, 

ring, rub, bang, strike and squeeze. He suggests that sorne of these can easily be achieve with 

only one degree offreedom. He used a I-DOF device called the Force Stick to model them. 

It consisted simply of a short stick attached to a motor, which is capped with a force-sensing 

resistor. Data from the FSR is read by an Atmel microcontroller, which then changes a 

control voltage for the motor. Data is also sent from the microcontroller to a computer, 

where PureData is used for audio synthesis. Specifically, the effects he implemented are 

hitting a virtual wall, traversing a bumpy surface, plucking, friction, swinging a pendulum 

against a bell, and spinning a virtual wheel. He writes, "the surprise is that the 'best' 

haptics (precise, stable) may not be the most 'musical'." Additionally, he daims, "sorne 

sounds are impossible without the active force interaction." 

Bennett et aL [7] examined the use of an electronically-controlled brake. As rotational 

movement of the apparat us controlled play head movement through a sound file, they used 

the audio output to modulate the brake. The effect was of being able to feel the resistance 

of the sound wave as it played. Interestingly, this experiment has sorne characteristics of 

force feedback, since it uses braking torque to resist user movement, but uses techniques 

usually exploited by vibrotactile feedback-that is, playback of the audio signal through 

an actuator. In an earlier study, Bennett [6] used the brake to simulate the hitting of a 

virtual drum kit. 

2.2.4 Extending sonification of data through haptics 

Hermann et al. [40] created the "audio-haptic baIl" for sonic manipulation, a sort of "vi

brating potato" which can be shaken, squeezed, hammered, moved and rotated to create 

different parametric changes. The intension was to use this device for navigating and con

trolling sonification of large amounts of data, to help "experience" the data in order to 

more easily find patterns and relationships within it. It is interesting in our context be

cause the idea behind the ball was a deliberate attempt to avoid mapping data directly to 

2Since the Plank involved a model of a touchable object, it could certainly be considered as a two
dimensional VMI. 
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sound parameters, but instead use the data as the model for a virtual object which is then 

interacted with via the device's sensors and vibrating actuator. 

This sort of data representation is reminiscent of another use of the Moose proposed 

much earlier by Chafe and O'Modhrain [16] where the device was used to create a haptic 

representation of the similarity between different performances of the same piece of music. 

It showed that haptics can have a role not only in musical performance, but also in analysis 

and editing of musical representations. 

2.2.5 Non-musical artistic uses for haptics 

Baxter and Lin [5] created a haptically-enabled visual painting environment in which brush 

strokes and fluid viscosity are simulated accurately, and showed that such a system could 

be used to create actual artistic works. 

There has been considerable interest in the use of 3D modeling for computer graphies 

[57]. For instance, SensAble [83] now offers two software products which utilize their haptic 

controllers to perform "clay-like" deformations of 3D models with force-feedback. 3 

Haptics have even been incorporated into a virtual hair styling salon [49, 96]. 

2.3 Non-tactual virtual instruments 

For our purposes, non-tactual VMI may incIude any digital sound interface, usually repre

sented with 3D graphies, which can be interacted with using an input device, and departs 

from the knobs and sliders often seen in the WIMp4 screen-based interface paradigm. 

In an early attempt to create musical instruments in virtual reality, Ng [65] extended the 

AVIARY virtual reality system to enable communication with an audio system. He created 

a 3D virtual recorder (woodwind instrument) that could be played by moving cubes over 

the finger holes. He envisioned a distributed virtual space in which musical performances 

could take place, with accurate spatialization of sound sources. He programmed AVIARY 

to use MIDI for triggering sound events on external synthesizer hardware. Mentioned also 
was the need for tactile stimulus, though haptic hardware was not available at that time. He 

unfortunately also did not have access to motion tracking hardware, and so his environment 

, 3 A full discussion of 3D "clay" modeling with haptics represents a large body of research and is out of 
the scope of this thesis. 

4Windows, Icons, Menus, Pointers 
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was limited in practice to playback of pre-recorded files. Similarly, computer hardware at 

the time was not capable of producing high quality spacialization. 

Choi et al. [17] created a "manifold interface" for exploring the parameters of an un

predictable audio circuit simulation. An image of the system is given in [4J. The manifold, 

representing continous transformations of circuit parameters mapped to the axes of a cube, 

is visually represented in three dimensions. The user can trace paths on the manifold which 

are then retraced to produce sound sequences. The interface is unique in that it presents 

a control space simultaneously with the phase space of the circuit being represented [4]. 

As mentioned in the previous chapter, Mulder [63] created two VMI simulations that 

used datagloves for input. They were the rubber sheet and the balloon. The user could 

push on the surfaces of these objects to create deformations, which created corresponding 

changes in sound characteristics. The simulations could also have certain nodes of the 

objects be connected to the positions of the thumb and index finger, so that the object could 

be stretched and twisted directly. The objects were modeled using spring-mass systems, 

which were constructed by fitting mathematical structures. For example, the curvature of 

the hand, computed from the positions of each finger relative to the angle of the palm, 

was applied to the balloon's ellipsoid curvature. An attempt was made to sonify the shape 

changes with associated sound qualities. The roundness of the balloon was mapped to the 

frequency modulation index, which provided a change in timbre. It is interesting to note 

Mulder's comments on user manipulation difficulties [63]: 

Touching the virtual object to move, rotate or shape the virtual object, required 

effective feedback of the contact between the hands and the virtual object. As 

no tactile feedback or force feedback was available, the performer had to rely on 

the visual feedback generated from the hand movements affecting the virtual 

object or the performer had to rely on changes in the sound. This method 

proved not so effective, probably because of a lack of suitable depth cues and 

because the absolute location of the virtual object had to be kinesthetically 
remembered (instead of being able to rely on tactile feedback when collision of 

the hand with object occurred) each time the hands moved without affecting 

the virtual object surface. 

It is clear from this description that manipulation of a virtual object should be far more 

practical if a user has a tactual impression of its presence. It also shows that there may 
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be a need for stereoscopie viewing of the 3D scenario. However, it remains to be seen 

what effect the graphical display has on the VMI experience if there is an adequate haptic 

representation available. 

Karjalainen and Maki-Patola [45] created a virtual reality environment for musical in

teraction called EVE. Similar to Mulder's work, they used datagloves for input, with the 

addition of a stereoscopie display. They discuss the lack of tactual feedback, and suggest 

introducing real objects into the interface. Sorne examples of instruments they created 

using EVE are a virtual air guitar, in which the distance between the hands de termines 

the pitch of a distorted Karplus-Strong guitar model; and a virtual xylophone, in which 

a user holds virtual mallets which can be used to hit virtual met al plates located in the 

air around the user. They report that users actually prefer to hold a real mallet for the 

same interaction, and that it seems to actually improve temporal accuracy. One might 

argue here that the use of real objects for controlling virtuai interfaces begins to somewhat 

resemble the idea of tangible computing, such as the reacTable [44], for exampie. 

Another consideration is that there is continuing interest in screen-based interfaces 

for music that depend on non-WIMP interaction and which incorporate manipulation of 

virtual objects in two dimensions. There is, for instance, currently a lot of interest in 

the intuitive gesturai interfaces enabled by muiti-touch display technology [22]. However, 

even for more usuai mouse-based interfaces, groups like Ixi Software create atypical two

dimensionai "toys" for musical interaction [51].5 

2.4 Discussion 

This section contains sorne refiections on aspects of haptic display put forward by the work 

discussed above. These issues were infiuential on the justification of using pen-based haptic 

displays, on the design of the implementation described in Chapter 4, and finally on what 

type of virtual instruments we might decide to construct for use with these devices. 

2.4.1 Partially virtual instruments 

One thing to note about the notion of an actuated keyboard, as compared to a pen- or 

glove-based haptic display, is that the main difference is in the choice to virtualize only part 

5These are sorne examples, but a complete list of two-dimension interfaces and tangible computing 
interfaces is beyond the scope of this thesis. 
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of the instrument. An actuated keyboard virtualizes the piano action, equally enabling the 

emulation of any type of keyboard action, such as the grand piano, harpsichord, or organ 

[69]. Therefore, in a sense, each instance of an emulated piano action is a virtual instrument, 

whose physical controller is the set of actuated keys. However, despite its large number 

of degrees of freedom, each key being one, the lack of integmlity [43] across these degrees 

of freedom is why the actuated keyboard would not necessarily be a choice manipulator 

for virtual instruments in general. We can assume that this is what led to the extensible 

design of the ERGOS device. 

The human interfaces with the keys using his fingers and is able to feel their tactile 

properties such as the texture (or smoothness) of the material, as weIl as their particular 

shape, using the nerve endings in his skin. In comparison, in a true VMI, the physical 

interface takes the place of the fingers instead of the keys. A completely virtualized piano 

keyboard, where each key is an object in a virtual environment, could be actuated by the 

exact same response algorithm as the real motorized keyboard. The haptic interface would 

relay this information to the user through the response detected by the proxy object, which 

represents the hand or fingers in virtual space. 

A human interacting with such a keyboard using a pen-based display may feel as though 

he is playing the piano with a long stick, and so the expected polyphony of the piano would 

likely make this a less-than-satisfying playing experience. On the other hand, an idealized 

glove-based force display that can related aIl tactile and kinesthetic sensations would be 

able to perf€ctly simulate a virtual piano. The notion that instruments can be virtualized at 

various locations in their mechanism-components of the virtual mechanism can be replaced 

with actuated physical manipulators or vice-versa-shows that the notion of a completely 

virtual instrument is not necessarily at odds with a partially virtual instrument: there is a 

dimension of continuity between physical controllers and their virtual counterparts. 

An implication of this is that virtual instruments are inherently limited by the choice 

of physical input device for interaction with the environment. Aspects include not only 

the number degrees of freedom, but also the configuration of these degrees, including their 

direction and their integrality. Since we are exploring the use of pen-based devices, which 

tend to share these characteristics, this must be taken into account when designing our 

VMl's. We may very weIl be limited to instruments that are comfortable to manipulate 

with a "long stick." An alternative approach would be to first design our VMI and consider 

our reqùirements for an input device, but since it is more convenient to reprogram software 
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than to have our choice of ideal hardware solutions, the former approach is preferred here. 

2.4.2 The importance of multi-dimensional configuration 

From the previous section, it follows that the number of degrees of freedom is not enough 

information for determining the suitability of a haptic interface. The configuration of 

these DOF is equally important. In pen based displays, we tend to see them grouped 

around either 3-DOF or 6-DOF displays, with sorne exceptions. Within these groups, the 

dimensions are always orthogonal. This is, of course, due to the physics of the world in 

which we live. A point can be described by exactly three coordinates. Furthermore, that 

point, representing the location of a body, may be rotated around each of these axes, and 

thus its orientation can be described by exactly three rotations with a known order. These 

are the point's Euler angles, often represented in order-independent fashion as a matrix 

or quaternion. Being able to then manipulate this point to any position or orientation 

creates a certain generality for the gestural interface: a 3D or 6D point can be imagined as 

representing any object in a space. In comparison, a 6-key piano keyboard also has 6 DOF, 

but since they are separate and their configuration is not orthogonal, they do not easily 

represent a point in space in a natural way. Trying to do so would be similar to creating 

a beautiful painting using an Etch-A-Sketch. Couturier [19] would say that a pen-based 

display has a high degree of compatibility with the physical world. 

This theory has indeed been tested in the context of control. Jacob et al. [43] tested 

users on a three-dimensional target-finding task. Subjects controlled an object using either 

a Polhemus position sens or or using the mouse for x and y position and an on-screen 

slider for depth. The experiment showed a marked improvement in performance when "the 

structure of the perceptual space of a graphical interaction task mirrors that of the control 

space of the input device." 

Interestingly, it is possible that the presence of haptic feedback may have sorne effect on 

this principle. Florens et al. [31] mentions that they tested users on two control structures, 

or ergonomies, for manipulating the rattle model. The first was a separated control where 

users could affect x position with one hand and y position with the other. The second 

was an integrated 2D stick. They found, qualitatively, that there was no obvious differ

ence in performance between the two situations. Further, they claimed that users found 

the first situation was more accurate and easier to exert precise control. However, when 
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haptic feedback was removed, the first situation became "absolutely ineffective," and "un

controllable." Unfortunately, no comments were available about the effects on the second 

situation. 

More work on this effect would be quite interesting, but, despite the reports of better 

accuracy in the separable situation, we find that pen-based control, where an dimensions 

are integrated to the fullest degree, is an adequate and useful mode of interaction for the 

general case. 

2.4.3 Physical accuracy 

Sounding objects 

Restricted to the detection of impact collisions, the level of control in a simulated instru

ment may be limited, like the piano hammer [33], to velocity and timing, perhaps with the 

addition of contact location; it is no wonder that a performer would consider micro-scale 

sliding and rolling interactions to be critical for generating subtle and expressive sounds 

from percussive instruments, simulated or real [90]. While this thesis is not expressly con

cerned with sound synthesis methods, it should be noted that acoustic modeling of various 

kinds is becoming quite popular in sound design for 3D simulations. A good overview of 

available physical modeling techniques is given by Karjalainen and Maki-Patola [45]. The 

use of rigid-body simulation for controlling physically modeled sound has been explored 

previously [70], and tends to often be targeted towards sound effects for 3D animation or 

video games. The reason is mostly self-explanatory: graphical simulation of a real object 

in virtual space seems to go hand in hand with its acoustical counterpart. 

For Luciani et al. [48], the physically consistant preservation of energy from gesture to 

sound is of utmost importance. However, the reader should keep in mind that in designing 

VMl's based on Mulder's view, we are not directly concerned with this. Rather, the goal 

is to create good controllers for sounds that may or may not be related to their physical 

properties-that is, we are not trying to create sounding objects [79]. Physically modeled 
sounds can, of course, provide parametric spaces that map weIl to the output of a virtual 

controller, and so the use of acoustic modeling is a good avenue for sound design in this 

context, but it is just as valid from the perspective of virtual controller design to map 

to sounds that are entirely disconnected from reality, as long as they are rich in timbraI 

dimension and the gestural control can be intuitive to the performer. For instance, in many 
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cases we are looking to create a virtual controller for a sound synthesis algorithm that has 

already been implemented. Thus, the design of the controller is based on the sound, rather 

than the converse. 

Geometrie vs. dynamies-based simulation 

A point of view derived from the energy-preserving ergotic scenario described in Luciani 

et al. [48] is that a simulation based on preserving the dynamics of an interaction is more 

important than keeping the exact geometric nature of the physical objects being simulated. 

The bowing simulator they describe makes no effort to reproduce the shape of a violin, but 

rather only ensures that the physical dynamics of the bow-string interaction are accurate. 

They describe how this simplified the physical model and allowed players to forget about 

physics while playing the instrument. 

While this is an interesting observation, in this work 1 argue that maintaining a geomet

ric model of the interaction certainly could not detract from the experience, and moreso 

that it might provide a more concrete experience both for the instrument designer and for 

the player. If we take the view, as described in the introductory chapter, that a virtual 

instrument is merely an extra layer of mapping based on a physical metaphor of manipu

lating a virtual object, then being able to visually or haptically construct an internaI image 

of the control surface is what allows the player to maintain this metaphor. 

Vibrating bodies 

While vibrotactile stimulation-the feedback that reminds a player that his instrument is 

"alive"-is certainly an important aspect of haptic feedback in gestural control, this thesis 

is more concerned with how force feedback may be used to provide a tactual image of a 

metaphorical controller. It is important to realize, then, that tactile feedback is in sorne 

ways inseparable from force-based display. This is because a force display must include 

sorne form of friction model for the tactual image to be usable. Without friction, a virtual 

object tends to feel "slippery" and can be difficult to manipulate. The presence of friction is 

connected to the concept of texture, since the type of friction exerted by lateral movement 

along an object's surface will give ri se to an image of the object's material properties. 

Coulomb friction tends to feel "rubbery", for example. 

At this time, 1 am explicitly not concerned with simulating perfectly the continuity 
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between frictional energy and aeoustic vibration, sinee l have ehosen to eoneentrate on force 

feedback rather than vibrotactile feedback. Thus, the objects simulated by the environment 

described in Chapter 4 have frictional properties for the purpose of making them easier to 

interact with, but the acoustic vibration simulated by the external audio synthesis does not 

feed back into the haptic environment. It may be possible to find a solution for this within 

the deseribed architecture, but for the moment this is le ft for future work. This topic is 

further discussed in Section 5.2.4. 

2.4.4 Rotational feedback 

Feasel's experience with simulating the guitar pick is exemplary of the currently underesti

mated need for torque feedback in haptic devices. A large number of real-world interactions 

make contact at points that are not centered on the location of the hand or fingertips. In 

interactions involving tools, the fingers typically grasp the tool at one point, while contact 

is made with an object at another point. Any force vector creates torque around the point 

where the users grasps the tool, which is felt in the wrist. Musical examples include picking 

a string, hitting with a drumstick, and bowing. The vBow, for example, benefitted from 

rotational feedback, which allowed it to render the positions of virtual strings. 

Torque can also be useful for moving and orienting objects that have inertial properties 

in a virtual space. In pen-based haptic displays in particular, the point interaction does 

not allow tracking of the fingers, and so simulations are most likely to involve tools grasped 

by the whole hand. Therefore, torque display is definitely an interesting avenue for musical 

interaction research. There are, unfortunately, fewer available haptic devices which have 

the capability to exert rotational force, and these carry higher price tags. This only makes 

it more important to show that this may be a useful feature for haptic devices, so that the 

industry can become interested in producing more affordable 6-DOF devices. 

2.5 Summary 

This chapter has given a history of virtual musical instruments and the use of force-feedback 

for musical purposes. Several issues relating to the implementation described in this thesis 

were discussed. Chapter 3 will provide an overview of currently available software devel

opment solutions for haptic displays. 
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Chapter 3 

Software Survey 

The construction of a haptic virtual environment requires the use of several types of soft~ 

ware. Firstly, drivers for communicating with haptic hardware are required. Secondly, 

software that implements collision detection for haptic simulation is needed. Typically this 

software will maintain a scene graph which tracks the objects in the environment in a hier~ 

archical manner. Thirdly, for creating dynamic behaviour, a physical dynamics engine, also 

called a rigid body simulator, must be used, which is responsible for tracking state infor~ 

mation about each object's mass and velocity, ensuring that they behave realistically when 

collisions occur. Support for graphical rendering of the environment is also needed. Lastly, 

distributed virtual reality software to enable collaborative interaction may be desired, but 

that is beyond our scope here. 

There is a certain amount of overlap between these requirements: there are several 

libraries which provide access to haptic devices but also have functions to perform collision 

detection, maintain the scene graph, and display it on the screen. However, most of these 

libraries do not provide physical dynamics, and so a static environment is assumed. On the 

other hand, physical dynamics libraries typically have their own copy of the scene graph 

which must be managed to ensure that it is synchronized with the visual~haptic scene. It 

should be noted that a physical dynamics library in fact contains many of the same classes 

of algorithms as a haptic library, since haptics and physics share similar collision detection 

requirements. However, in a "static" haptic environment, typically the collision detection 

is required only for the proxy object representing the haptic device's end effector. This is 

more often than not assumed to be a sphere, or even a sphere representing a point, which 
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greatly simplifies collision detection. 

Unfortunately, it also inherently limits interaction to three degrees of freedom. In 

contrast, physical dynamics engines usually provide 6-DOF physics, since objects often 

collide at positions away from their centers of mass. In principle, a physical dynamics 

engine could be turned into a haptics library by having one object represent the haptic 

device's end effector, as discussed by DeFanti et al. [25]. In practise however, some 6-DOF 

physical simulations may have difficulty meeting the real-time requirements of a 1 KHz 

haptic servoloop when a moderate number of objects are in the scene. This is changing 

as the available processing power continues to increase, but no offering which performs 

6-DOF physical dynamics and incorporates haptic support is yet available. Section 4.4 will 

describe one solution to this problem, in which static haptic processing is performed in 

parallel with slower 6-DOF dynamic physics processing. 

This chapter provides an overview of several software environments either commercially 

or freely available for creating force feedback-enabled simulations. A short overview of the 

capabilities and availability of each is included, as well as a brief description of workfiow in 

the environment. We also describe the physical dynamics environment chosen for the work 

described in the next chapter. 

3.1 Haptics software 

3.1.1 CHAI 3D 

CHAI 3D1, which is pronounced like Chai tea and stands for Computer Haptics & Active 

Interfaces, was created by Conti et al. [18] at Stanford University. It is a C++ class frame

work which is able to represent a scenegraph composed of both mesh-based objects, which 

can be loaded from disk in the 3DS format, and objects defined by implicit functions [81], 

such as spheres and torii. The library makes use of C++ inheritance to abstract the device 

drivers, so that various haptic devices with differing drivers and 1/0 interfaces can be sup

ported by the same source code. It supports 3-DOF interaction, though the latest version 

is able to detect mesh-on-mesh collisions. At the time of this writing, it supports devices 

from SensAble, MPB Technologies, and Force Dimension, as well as the ServoToGo and 

Sensoray digital 1/0 boards, which are currently popularchoices for robotics development. 

lCRAI was chosen as the basis for the software discussed in Chapter 4. 
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Fig. 3.1 A CHAI 3D demonstration application showing how to use it in 
conjunction with the OpenDynamicsEngine. The cube can be pushed around 
using the haptic device, and it bounces off the walls. CHAI can be used to 
visualize object axes and surface normals, as shown here. 
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CHAI 3D is free to download and is open-source software covered by the GNU General 

Public License version 2 (GPLv2). It has been developed on Microsoft Windows but also 

runs on Linux for devices which provide drivers, and can also be pursuaded to run on Apple 

OS X as weIl. Haptic object "material" properties such as stiffness and friction coefficients 

can be tuned, and two types of collision detection optimizations are available. For graphies, 

it supports various colour properties, transparency, and environment mapping which are 

drawn using OpenGL. For debugging and analysis purposes, internaI structures such as 

collision trees, normal vectors, force vectors, and local object axes can be visualized. 

3.1.2 Haptik Library 

The Haptik Library [24], developed by the Siena Robotics and Systems Lab (SIRSLab), 

provides a device-independent interface to pen-based haptic displays. Unlike many other 

software packages discussed in this section, Haptik does not provide scenegraph tracking 

or any huilt-in rendering algorithms. However, it uses a component-hased approach for 

accessing haptic hardware. "Component-based" refers to a specifie paradigm for handling 

communication between software modules, which is also seen in Microsoft software (COM), 
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Mozilla (XPCOM), and CORBA. Instead of providing device abstraction by using C++ 

inheritance and polymorphism, as in CHAI for example, devices are accessed through a 

well-defined, language-independant interface. Interfaces guarantee forward- and backward

compatibility on the binary level, so that software components can be upgraded without 

causing errors and without requiring recompilation. New features are added by creating 

new interfaces, and components can continue to support old interfaces while simultaneously 

providing new ones. Since component interfaces allow complete independance from imple

mentation details, a particular implementation can provide other services such as recording 

and playing back data, device usage over a network, or mouse-based emulation of haptic 

hardware for debugging purposes. 

By providing a generic interface called IHaptikDevice representing any 6-DOF haptic 

device, the library allows completely hardware-independant development. (To be clear, 6-

DOF collision detection and dynamics are not provided.) Components implementing this 

interface can contain the interface to the hardware's actual driver. Currently Haptik has 

implementations for devices from Force Dimension, SensAble, and MPB Technologies. The 

Novint Falcon is mentioned in the article, so presumably it will be supported once it is 

released. Haptik provides either a callback-based or polling architecture for running the 

high-priority haptic rendering thread. The paper mentions that Haptik has been used as 

a device driver in both the H3D and CHAI scenegraph packages. Sorne software examples 

are given implementing very simple haptic effects in only four or five lines of C++ code. 

It runs on Microsoft Windows and Linux. 

3.1.3 osgHaptics 

Maintained by Umea University's VRlab, osgHaptics [3] is an extension to the OpenScene

Graph project [74]. The OSG project is an open-source C++ library for tracking scenes 

containing 3D objects. It has been used in projects such as games, virtual reality appli

cations, and visualization. osgHaptics uses the OpenHaptics toolkit from SensAble, (see 

Section 3.1.7,) to allow haptic rendering of objects represented in the scene graph. Hap

tic materials may have stiffness, damping, and friction properties. The software relies on 

OpenHaptics to perform collision detection and to communicate with the haptic device. 

As such, osgHaptics acts as a bridge between an OSG scene and a SensAble haptic device. 

Software using OSG for visualization may find it a convenient way to allow haptic inter-
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Fig. 3.2 A proSENSE demonstration application. The user can feel the 
virtual heart pulsing when the haptic proxy is placed on its surface. The 
Simulink graph used to create the demonstration is shown here. The scene is 
described by a VRML file. 
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action, however the toolkit is limited to devices supported by OpenHaptics. An additional 

consideration is that ose is a particularly large library, and not all projects will find it 

convenient to use for simple tasks. 

3.1.4 proSENSE 

An offering from Handshake VR, based in Waterloo, Ontario, the proSENSE Virtual Touch 

Toolbox is a set of Simulink function blocks for Mathwork's popular Matlab scientific com

puting software that allow the rendering of haptic effects and communication with several 

haptic devices. It works in cooperation with sever al other Matlab toolkits, including the 

Virtual Reality Toolkit and the Real-Time Workshop (RTW). Function blocks are linked 

to each other graphically in a Simulink window, allowing for a visual style of programming. 

The VR Toolkit is used to provide a graphical environment based on the VRML file for

mat, which is also synchronized with the haptic model in Simulink. The RTW is used to 

generate C code and compile it into an executable, which is then run in parallel with the 

graphical simulation. The real-time portion of the code may run on another computer, 



3 Software Survey 29 

using a network connection for synchronization. The generated C code is also linked with 

proprietary pre-compiled object code. 

Interfaces are available for devices from SensAble, Force Dimension, Quanser, and MPB 

Technologies, as weIl as with Microsoft Windows-compatible input and force-feedback de

vices such as joysticks and mice. Modules are available for simulating various simple objects 

including boxes, cones, cylinders, spheres, elevation maps, and mesh-based objects. Objects 

have properties such as size, stiffness, and friction parameters. Friction is modeled using 

Coulomb friction with or without stiction. There are also modules for creating springs, in

ertia, and damping. Additionally, several functions are available for performing time delay 

compensation for operation over a network, including Handshake's TiDeC algorithm which 

is able to guarantee stability over long-delay connections. It includes limited sound support 

in the form of a module which can play back a sound file based on an event trigger. 

This toolkit would be best recommended for users who are familiar with the Simulink 

environment and wish to incorporate haptic feedback into Matlab-based VR simulations. 

For example, it may be useful to those wishing to use haptics for exploring data sets pre

processed in Matlab. While sound support is mostly lacking, Simulink can be extended by 

a C programming interface, so that communication with a more interesting audio engine 

might be established. There has been sorne effort by Christian Frisson and David Birnbaum 

of McGill's Input Deviees and Musical Interaction Laboratory to create an Open Sound 

Control module for communicating with audio synthesis software, however this software 

remains thus far unpublished. 

One pitfall to bear in mind is that there is a different Simulink block for each supported 

device, and no abstraction of the interface is provided. This me ans that changing hardware 

will require sorne minimal amount of reprogramming. 

3.1.5 Reachin API 

The Reachin API [77], an offering from Reachin Technologies of ,Stockholm, Sweden, is 

a complete haptics development framework. It was the first hapticsj graphies framework 

to support multiple devices [18]. It supports scenegraph management using the VRML 

file format. Elements of the VRML scene can be given haptic properties, so that they 

can be touched and manipulated with a haptic device. Object properties can be scripted 

using the Python programming language. Objects can be given deformable properties, so 
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Fig. 3.3 A Reachin API demonstration application. A portion of the VRML 
code used to define this environrnent is shown on the right-hand side. The 
object can be deforrned like a clay rnodel. Sorne user-interface elernents are 
shown: two push-buttons which have a haptic "click", and a colour wheel. 

that they can become elastic or clay-like, and bump-mapping techniques can be used for 

both graphical and haptic rendering of bitmap-based textures. Reachin supports several 

GUI-style interaction elements, such as push-buttons and color selectors, which can be 

manipulated with the haptic device. 

Reachin supports devices from Force Dimension, SensAble, and MPB Technologies. It 

has support for multiple devices, enabling a collaborative environment. Stereoscopie views 

are also supported. Resources such as scenes and materials can be specified using Internet

aware Universal Resource Names (URN), a scheme aIlowing the unique identification of 

a resource which may be located remotely. An account of incorporating haptic support 

through Reachin into a virtual reality system can be found in [1]. 

3.1.6 H3D 

H3D is an open-source offering from SenseGraphics. It is dual licensed under the GNU 

General Public License as weIl as a commercial license. It runs on Microsoft Windows, 

Linux, and Apple OS X, and is based around the X3D file format, an XML-based ISO

standard language for describing 3D scenes and objects which is often thought of as the 
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Fig. 3.4 An H3D demonstration application. The X3D file which described 
the scene is shown on the right. The object can be touched and feels smooth. 
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successor to VRML. It can be programmed directly with C++, but also has a binding 

for the Python dynamic programming language. Similar to osgHaptics, it de pends on 

OpenHaptics to perform collision detection and haptic rendering, and thus a SensAble 

license is required for use. However, since it contains a driver using the Haptik Library 

as a back-end, it is possible in practice to use it with non-SensAble devices, as long as 

the OpenHaptics library is available. Built-in collision detection may be added in future 

revisions. In addition to X3D meshes, it supports primitives such as boxes, cylinders, and 

cones. Like Reachin, scenes and materials can be specified using Internet-aware URN's. 

Several advanced graphics techniques can be used, such as shaders, textures, and stereo 

rendering. 

A demonstration application which cornes with H3D can be seen in Figure 3.4. 

3.1.7 OpenHaptics 

OpenHaptics is the toolkit distributed with SensAble's PHANTOM haptic devices. It 
is a successor to their previous GHOST SDK. GHOST was the first haptics programming 

framework to allow high-Ievel definition of scene graph elements which are rendered without 

the need for user-defined algorithms. Many research users bypassed this functionality for 

the sake of exploring new rendering methods. As a reaction, SensAble created OpenHaptics 

as two libraries, a "device-Ievel" library called HD and a higher-Ievel library called HL. 
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The HD library provides a real-time callback which runs at the haptie rate. Functions are 

provided for reading the device's position and writing values to the device's motors in either 

Cartesian or joint-space coordinates. The HL library is a set of functions modeled after 

the design of the OpenGL graphies API. It provides function caUs that delimit the start 

and end of a frame render, which can be inserted in a typical OpenGL drawing function. 

Between these two function caUs, OpenGL caUs are detected and used to generate the 

haptic scene. Thus, OpenHaptics makes it possible to re-use graphieal rendering routines 

to define the haptic scene, meaning that rendering code need only be written once. In 

addition to frame delimiting, functions are available for specifying haptic properties such 

as friction and stiffness. 

It supports two methods for haptic display. The first is the "feedback buffer" technique, 

which uses OpenGL data structures to extract the geometric properties of the scene. This 

is similar in princip le to most scene graph libraries described in this chapter. The second 

technique, called "adaptive viewport" , uses the graphies card to render a height map of the 

current scene, which is retrieved from the graphies hardware's depth buffer. The height 

map is then used to calculate collision with the haptic proxy. Since this technique makes 

use of the graphies hardware, it is able to render more triangles and much more complex 

scene geometry. Sorne drawbacks are that strange effects may be produced by concave 

surfaces or if the haptic proxy moves to quickly. The documentation daims that for most 

purposes a height map rendering frequency of 30 to 60 Hz is sufficient for most applications. 

OpenHaptics, despite the name, is a closed-source library and supports only SensAble 

devices. It runs on Windows and Linux, the latter being available separately. 

3.1.8 ACROE CORDIS-ANIMA 

CORDIS-ANIMA, created by Cadoz et al. [14] for their research in physical modelling for 

use with multi-sensory systems, is designed to describe fundamentaUy physically-driven 

simulations. l inc1ude it in the category of Haptics software because it describes a scene 

composed of objects which can be touched with a haptic interface, however it is more 

accurate to say that it is in fact particle-based rather than dealing with object primitives. 

Elements in CORDIS-ANIMA are one of four basic types: the first three are mass, spring, 

and friction elements, which can construct what they term "linear matter." The fourth 

element introduces non-linear relationships and is called a conditional link. Objects are 
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constructed by connecting masses to each other through springs. The objects then behave 

in a physical manner, allowing deformations to occur. The object deformations, through 

which oscillation arises, can be used to generate sound. Simultaneously, a specially-designed 

haptic interface, now commercially available through ERGOS Technologies, can be used to 

interact with the scene. Thus, the same physical model is used to pro duce audio, graphie 

and haptic feedback. In the ERGOS system, the model is run on a dedicated DSP board 

which is connected to the haptic device. The DSP is embedded in a computer through a 

PCI interface, and the PC is used to general graphical and audio feedback. 

3.1.9 Summary 

Table 3.1 summarizes the capabilities and licenses of the toolkits described above. It 

shows a few trends: though there is sorne cross-platform support-particularly in the open

source offerings-the best device support is for Microsoft Windows, with particularly litt le 

attention giveQ. to Apple OS X. This is interesting since audio research, which we are 

concerned with here, is one area in which OS X has attained a high level of popularity. 

Most toolkits consist of C++ frameworks, although sorne alternative languages and text

based description formats can be used. 

Not present in the table is that sound support is only explicitly discussed by the proS

ENSE documentation, with the exception of CORDIS-ANIMA for which sound is as im

portant as the other sens ory modes. Several libraries do come with examples of how to 

use sound file play-back routines in conjunction with haptics, but these capabilities are 

not directly supported by the library, and often rely on operating-system specifies such as 

Microsoft's DirectX. 

Most libraries provide sorne support for various commercial hardware solutions, though 

there are cases where only SensAble devices are supported. Again, CORDIS-ANIMA is 

the exception here, where the language is compiled for a special DSP card which executes 

the program independantly from the PC, with a direct interface to a particular hardware 

device. 

3.2 Physical dynamics engines 

There are many software libraries available both open-source and proprietary that provide 

routines for calculating physical dynamics. A complete survey of physical dynamics software 
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Name Deviees :Seene Mesh/Seene OOF Graphies Oynamics Operating Programming License 
Graph Support System Language 

(JHAI30 SensAble Yes 30S 3 OpenGL No Windows, C++ GPL 
Force Dimension Linux 
MPB Technologies 

Haptik Li- SensAble No NIA NIA NIA NIA Windows, C++, Java 
~~~ 1 

brary Force Dimension Linux 
MPB Technolo"ies 

osgHapties SensAble Yes Many 3 OpenGL No Windows C++ LUPL 
available 

pro:;l!;m;l!; ~ensA~le Yes VRML 3 VR Toolkit Yes windows Matlab( Proprietary 
Force Dimension Simulink 
Quanser 
MPB TechnololZies 

Keaehin SensAble Yes VRML 3 OpenGL For UI ele- Windows Python, Proprietary 
API Force Dimension ments extended 

MPB TeehnololZies by C++ 
H3U :SensAble (required) Yes X30 3 UpenUL No Windows, C++, GPL + 

Force Dimension Linux, OS Python commef-
MPB Technologies X cial 

UpenHaptics :SensAble Yes Application- 3 OpenGL No Windows, C / C++ Proprietary 
provided Linux 

C~~J?IS- ACRO~ ~KUOS Yes Application- Variable Yes ? ~~~~l:;- roprietary 
ANIMA provided 

Table 3.1 Haptic toolkits 

is beyond the scope of this thesis. However, the Open Dynamics Engine (ODE), which was 

chosen for this project, is described here briefly. It was chosen because it is free and 

open-source, can run under real-time constraints, and was adequate for our purposes. An 

in-depth comparison between ODE and several other physieal dynamies engines can be 

found in [87]. 

3.2.1 The Open Dynamics Engine 

Created by Smith [88], ODE is an open-source physical modelling engine which can be used 

in conjunction with a graphies library to provide realistie physics for 3D environments. 

It supports several geometries, such as prisms, spheres, cylinders, planes, and triangle 

meshes. Object geometries, called "geoms", are used for collision detection and can be 

attached to rigid bodies which track physical properties such as position, orientation, mass, 

and velocity. This separation between collision detection and the physical environment 

provides powerful ways to create interesting dynamies. For example, multiple geoms can 

be attached to a single body to create compound objects, or geoms can be dissociated from 

their body in order to remove them from the simulation. Additionally, body movement can 

be constrained in a number of ways by creating joints between them. Many joint types 

are available, such as ball joints, hinges, universal joints, and sliding joints. Bodies can be 

constrained relative to each other or relative to the global coordinate system. This way, 

physical mechanisms can be created. ODE is cross-platform, with no dependancies on a 
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partieular graphies library. 

3.3 Summary 

This chapter described several currently available solutions for haptics programming. A 

common theme throughout has been the use of a programming language or description file 

for defining the scene contents, which is then compiled or interpreted by the software. In 

contrast, audio environments su ch as PureData [75] or Max/MSP [20] allow the dynamic 

creation and destruction of audio units during run-time. This is a paradigm which has 

proven useful to researchers and artists in sound and visual media, who enjoy the flexibility 

of modifying algorithms as they are executed, and appreciate the user-friendly approach 

of visual programming. The technical knowledge currently required to create physically 

realistic virtual environments and to take advantage of the haptic channel makes these 

ideas either unaccessible or at least inconvient for this audience. 

In the next chapter, we will see an approach to hapties whieh allows run-time experi

mentation with objects in a virtual environment, as weIl as communication with third-party 

audio software running in parallel on the same computer or elsewhere on a network. 
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Chapter 4 

A Simulàtion Server for Virtual 

Musical Instruments 

-
4.1 Introduction 

ln the previous chapter, 1 described several software solutions for creating haptic simu

lations. Unfortunately, with the notable exception of CORDIS-ANIMA, none of these 

solutions provides very interesting support for audio. Additionally, unlike audio research 

software, they do not generally allow dynamic modification of the simulation at run-time, 

and require a certain level of programming ability. They also do not make it easy to create 

physically dynamic environments with objects that react to each other, since rigid body 

simulation is typically only available as a separate library. 

For the purpose of creating virtual musical instruments, 1 am interested in incorporating 

an these attributes into an easy-to-use system for creating and experimenting with haptic 

interfaces for music. IdeaUy, a haptic virtual controUer should interface with previously 

existing audio software instead of trying to re-invent that particular wheel, and should be 

accessible to non-programmers so that it is a useful tool for musicians and researchers in 

psychology, music technology, and related areas. 

4.2 Case study: video integration in an audio system 

As an example of an audio system that has been expanded with visual capabilities, we can 

look at PureData's GEM set of externals, written by Danks [21J. GEM provides a viewpott 
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for an OpenGL environment, and several objects for controlling what is drawn into it. It 

supports several 2D and 3D primitives such as squares, circles, cubes, spheres, and cones. 

These shapes can be texture-mapped with images or video. It can also perform certain 

image processing tasks, like alpha masking or convolving two images. 

PureData pro cesses data in two ways: firstly, it has control data, which is processed 

asynchronously. Whenever an event occurs, like an incoming MIDI note for example, it is 

propagated immediately through the network of connected ob jects. Delay and metronome 

objects can be used to introduce timed events. Secondly, it has audio or DSP data, which 

flows continuously through a separate network of objects, updating audio hardware buffers 

in real-time. The two networks are connected by DSP objects which can accept control 

data. Therefore, DSP parameters are updated whenever control processing can occur, 

slotted between two audio cycles. 

GEM works at the control data level. When the screen must be updated, a GEM ob

ject called "gemhead" issues a command to be passed down the chain, potentially through 

geometric transformations, until it reaches a final drawing object. The timing for these 

operations is not considered as critical as for the audio chain; though it is not desirable 

for video output to glitch or pause, it is able to run at a lower priority than audio because 

the timing interval between frames is slower, as described in the next section. However, 

the GEM documentation does warn that CPU-hungry image processing may cause play

back glitches in the audio stream, which shows that potential problems can occur when a 

processing task runs in synchrony with a real-time audio stream. 

The system described in this chapter began life as an idea for a "GEM for haptics." 

It quickly became apparent, however, that it would be more fruitful to run a haptics 

simulation in a separate process. The reasons are several: unlike video, haptics has real

time requirements that are more strict than those for audio, making the addition of a 

haptics DSP chain to PureData require non-trivial changes to its core engine. Additionally, 

because of the potential for CPU hogging, it is useful to have the option of running a haptics 

simulation on a separate computer instead of within the same process as an audio/visual 

engine. Finally, we would like to create a haptics system that is useful for PureData but 

also for other audio software, and creating PureData-specific extensions would not have 

allowed this as easily as taking advantage of a communication protocol shared by several 

audio systems. 
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Fig. 4.1 Each part of the system has different timing requirements and runs 
independently. The process boundary is delineated by the dotted line. Each 
part of the simulation process, within this line, is a separate thread, while the 
audio process can be any software which is ose compatible. 

4.3 Latency requirements 

38 

A rendering system for a multi-modal display is inherently separable by each of its sensory 

modes. While sorne common properties can be shared, each mode has different requirements 

regarding timing and data throughput. For example, while control changes should be 

apparent in an audio stream within 10 ms or less for a satisfying user experience [52], 

visual displays usually update at about 30 Hz, meaning that control changes are allowed 

up to 33 ms to be received and processed. 

In contrast, force-feedback haptics requires the total latency be 1 ms or less. This is 

because input and output are directly coupled: the user is part of a closed system. The 

"display" depends entirely on the user's movement, and reactions to position changes must 

be as instantaneous as possible in order to render the feel of a hard surface. It has been 

previously found that between a 500 Hz and 1 kHz update rate must be maintained for 

a good user experience [59]. These timing requirements and their inter-relationships are 

shown in Figure 4.1. 

Distinct from the haptic closed-loop rate is the audio-haptic latency. This is the time 

between haptic events and a resulting sound. Adelstein et al. [2] investigated this latency. 



4 A Simulation Server for Virtual Musical Instruments 

Physlcal Model 

Fig. 4.2 A synchronous system architecture in which audio and haptic sen
sory cues are derived from the same physical model. 
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They used an accelerometer attached to a hammer to detect taps, and converted the signal 

to MIDI to generate audio events. Subjects wore headphones so that they felt the ham

mer independantly from hearing the results. With this apparat us, they showed that the 

measured just-noticeable difference (JND) for audio-haptic latency is about 24 ms, with a 

2.2 ms standard error. This has implications for the time allowed for information to fiow 

from a haptic simulation to an audio pro cess , though evidence suggests that audio-haptic 

timing maybe be more strict for active (motorized) haptic devices as opposed to passive 

apparatus [26]. 

4.4 System architecture 

As such, there are choices to make in terms of how the system architecture will take these 

differences into account. In the ideal case, a single fast processor could be used to perform 

aIl operations in synchrony. A single simulation of the environment would be used to 

derive haptic, graphie, and audio feedback, as shown in Figure 4.2. In practice, running a 

complete simulation at the audio rate will quickly exceed computing power for a moderate 

number of objects. An oft-used optimization is to allow the physically vibrating bodies 

to be modeled in a more efficient manner, using techniques such as modal synthesis or 

waveguide modeling, while the macro interactions between objects are computed at haptic 

rates. 

When the two parts of such an algorithm are run synchronously on a single proces

Sof, this architecture usually provides minimallatency between each sensory mode. It is 
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used, for example, by the CORDIS-ANIMA system which makes use of a dedicated DSP 

board and attempts to create a very high-fidelity user experience. Additionally, since a 

realistic physical model is used for both gesture and sound, it creates an energy-preserving 

continuum between instrumental gesture and the resulting audio output, which is ideal for 

"playing" virtual physical objects intuitively [48]. As a second example, this architecture 

was also used for the AHI project [26], running interrupt-driven haptics and sound on a 

DSP, in order to measure a lower bound for haptic-audio latency. 

However, from the point of view of creating virtual gestural controllers for existing 

synthesis systems, a disadvantage of using a single physical model for aIl sensory modes 

is that it imposes restrictions on the chosen audio synthesis model. Essentially, physical 

modeling is the only acceptable audio synthesis in this paradigm, ignoring that we may 

wish to control, for example, FM synthesis, etc. In fact, since the physical model takes 

care of audio computation, it is not clear how tobest interface such a system with existing 

audio software running on a normal desktop computer. 

Additionally, there is a tendancy in uses of the synchronous model to use dedicated DSP 

hardware to provide tight control over timing and synchronization. Since most commercial 

haptic devices are used with desktop computers, and because VMI designers would pre fer 

to work with audio software they are already comfortable with, a solution is required which 

can take advantage of pre-existiI:lg hardware and software. An implication of using standard 

PC hardware is that there is an upper-bound on achievable data rates, since most operating 

systems allow timing Just within 1 ms, but it also means that the computational architecture 

can be extremely flexible-for example, taking advantage of the growing popularity of multi

core processors [89], or even high-bandwidth local networking to allow a tiered approach 

[54]. 
Therefore, an alternative to the strictly synchronous design discussed above is to con

sider each sensory mode independently, running in separate pro cesses with asynchronous 

timing, communicating events and continuous information to each other. This architecture 

stresses that it is not the synchroneity that matters, so much as the latency between each 

sensory mode that must remain below the level of human perception. This is the approach 

l have taken with the system described here, seen in Figure 4.3. 

Each module of the multi-modal simulation runs separately, at different rates, using 

either shared memory or sorne other communication method to stay synchronized. The 

physics model is updated at about 100 Hz, though this is variable. The haptic device 
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Fig. 4.3 The chosen architecture separates the haptic virtual environment 
from the sound synthesis over an asynchronous communication channel. 
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interacts with the environment at 1 KHz. When the haptic proxy touches an object, forces 

are communicated to the physics thread and applied to the object at the next cycle. This 

asynchronous approach, based on an example application which is included in the CHAI 

3D download, allows objects to feel stiff, since the haptic springs are calculated at an 

appropriate rate, but also allows the physics model to run slower in or der to allow more 

objects with higher complexity to be modeled. 

Events in the physical environment, such as collisions or object movement, are com

municated to the audio process using a network protocol. Additionally, the audio process, 

which is used to control the simulation, can also send messages to the physics model telling 

it to instantiate or destroy objects, or to change their properties on the fly. 

4.5 Communication 

In this case, the audio pro cess can be any software which supports the chosen network 

protocol. For this reason, l decided to exploit the Open Sound Control (OSC) [98] standard 

for several reasons: it is supported by many popular audio packages that are well-known 

by the target audience; it allows hierarchical addressing of messages, which is convenient 

for accessing properties of a scene graph; and it is intended to become a standard for 

communication between audio systems and gestural controllers. 

Open Sound Control messages are. composed of an address, which is divided in parts by 
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the slash character CI'), a timestamp, and an arbitrary number of arguments which can be 

any type, such as floating-point numbers, integers, strings, or booleans. For example, in a 

typical synthesis situation, a controller might change the frequency of an oscillator with a 

message such as: 

/oscillator/l/frequency 440 

For interacting with virtual environments, similar messages are defined for creating and 

destroying objects, specifying relationships between objects, and modifying and retrieving 

object properties. This environment can be considered a kind of server for constructing 

and interacting with virtual musical instruments. 

Using ose it is possible to support standards for querying a controller's parameter 

namespace and making connections between the controller and the synthesis engine through 

dedicated mapping tools. We have proposed ideas towards developing such a standard [53], 
and they will be implemented for this system in the future. 

By convention, ose messages use UDP IIP datagrams as the transport layer, which are 

considered unreliable but fast, and thus targetted towards data streaming and continuous 

control. ose, however, can actually be transported over other types of connections. For 

example, TCP IIP might be used for more reliable communication over large networks, or 

a block of shared memory might be used for fast communication on a local computer. For 

our purposes, UDP IIP was adequate, being quite reliable in practise on a local network, 

especially sinee it is usually what is supported by audio software. InformaI tests showed 

that an acceptable number of ose messages were able to pass between proeesses on a 

local network at weIl under the 24 ms audio-haptic latency mentioned in Section 4.3. OSC 

was chosen over MIDI, a more established sound proto col , for several reasons: MIDI has 

limitations on speed, does not support a hierarchical structure, and has no support for 

floating-point numbers, which are used extensively for data representation in this system. 

Sorne popular audio programs which can send and receive ose messages are PureData 

[75J, Max/MSP [20J, Chuck [95J, and SuperCollider [58J. Additionally, almost any of these 

programs could easily be used to provide a translation layer between a given set of ose 
messages and MIDI, opening the possibilities of compatibility even wider. 
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4.6 Implementation 

1 have implemented the described system as a C++ software package called DIMPLE, 

which stands for the Dynamically Interactive Musically PhysicaL Environment. It makes 

use of several open-source libraries, described in the previous chapter, which allowed me 

to implement the system quickly and efficiently. Since sorne of these libraries are licensed 

under the GNU General Public Lieense, DIMPLE is also GPL software, which means 

that it is free to download, use, and modify. This choice was made to make the software 

available to as wide an audience as possible, and to allow others to eventually contribute 

to development. 

DIMPLE makes use of the Open Dynamics Engine (ODE) to control the physical in

teraction between virtual objects. It uses CHAI 3D to perform high-rate haptie interaction 

with the objects. The CHAI 3D scene graph is synchronized with ODE at the end of each 

simulation timestep. It also uses CHAI to update a 3D display, driven by the OpenGL 

graphies library. A library called LibLo [36] is used for sending and receiving OSC mes

sages. Though CHAI 3D does not support haptie hardware in aIl operating systems due to 

availability of hardware drivers, DIMPLE itself is able to run under Microsoft Windows, 

Linux, and Apple OS X. 

A class hierarchy is used to organize objects in the scene and track their CHAI 3D 

and ODE representations. A diagram of this class organization is given in Figure 4.4. 

These classes are used for handling OSC message requests. A base class, OscBase, provides 

mechanisms for registering message handlers. Each type of entity available in DIMPLE has 

an OSC-enabled class associated with it. These include two types of objects, representing 

spheres and prisms, as weIl as six types of constraints. Additionally, composite objects can 

be constructed which are composed of other objects but share a single instance of ODE's 

rigid body structure. The constraint types correspond to ODE's "joints", defined in the 

ODE manual [88]. By creating objects and constraints between them, mechanisms can be 

created which interact with each other and with the haptic controller. 
When a message arrives, it is transferred ta the physics and haptics threads for handling. 

Changes to the CHAI structures occur in the haptics thread, while changes to the ODE 

structures occur in the physics thread. A common class, OscValue, is used to contain scalar 

and vector properties of objects, so that any object property can be requested through OSC 

messaging. These are also kept synchronized with ODE and CHAI properties through the 
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Fig. 4.4 Class diagram of the OSC-aware scene graph. White arrows rep
resent inheritance relationships, open arrows represent pointers, and black 
arrows represent actions. 

use of callback functions. 

4.7 Messages 
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This section includes a brief description of messages accepted by DIMPLE. A complete 

description can be found in the appendix. 

4.7.1 Creating and modifying objects 

Objects and constraints are categorized under the major message classes of /object and 

/constraint. Objects are created by sending the create message addressed to the re

quested shape or constraint type. Creation messages must be given a name as the first 

argument. Henceforth the object shall be referred to by name throughout its life. An 

optional position can also be specified with a 3-vector argument. For example, 

/object/sphere/create mysphere 0 0.1 0 

This creates a sphere at the given coordinates. Note that the coordinate system used 

assumes that the visible screen area in x and y is in the range [-1, 1]. The sphere's radius 

can then be changed: 
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/object/mysphere/radius 0.5 

Other properties, described in the appendix, are accessed in a similar manner. 

4.7.2 Creating constraints 

Constraints can aiso be created between objects. The keyword world is reserved for creating 

constraints between an object and the "world", referring to the global Cartesian coordinate 

system. An object constrained by a hinge to the world will seem to be hinged to nothing, 

free to rotate around a particular axis in space. For exampIe, 

/constraint/hinge/create hingel mysphere world 0 0 0 0 0 1 

This would hinge the sphere to the point (0, 0, 0), around the axis defined by (0, 0, 1). 

Note that different constraints require different numbers of points or axes to define them. 

4.7.3 Specifying constraint responses 

Constraints can aiso be given responses, which are functions defining how the remaining 

free axes of a constraint should respond to changes in position. An example of a response 

is a spring. Applying a spring response to a hinge will create an object which pushes 

back when it is rotated off of its rest position. A response can be specified using a similar 

message, 

/constraint/hingel/response spring 10 0.1 

This would inform the hinge to respond according to a spring with a stiffness coefficient of 

10 and a damping coefficient of 0.1. 

4.7.4 Retrieving properties 

Properties of objects or constraints can be retrieved by requesting them using the /get 

message. This message takes an optionai argument specifying an interval in milliseconds. 

If this argument is unspecified, the value will be returned to the calling program once. If it 

is given, the value will be returned at regular intervals. This helps in specifying values to 

be used as continuous control for modulating parameters of an audio synthesis algorithms. 

For example, 
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/constraint/hingel/force/magnitude/get 10 

This will return the force applied by the constraint's response handler every 10 ms. The 

value will stop being sent if the same message is sent with a specified interval of zero. 

4.8 Virtual Musical Instruments Created 

The previous sections introduced a software environment for dynamically creating and 

experirn:enting with virtual musical instruments. Here, we describe some simple VMI's 

that have been created using it. These are not intended to be realistically use fuI musical 

instruments, but merely show how the environment can be used. The focus will be on the 

description of the virtual controller, though audio synthesis will also be discussed briefly. 

Though most examples are in PureData, similar constructs could certainly be created in 

other music languages supporting ose. 

4.8.1 Force Stick 

As an initial pilot project, l decided to re-implement Verplank's Force Stick [92] in the 

DIMPLE environment. This seemed like a good starting point, since the force stick is 

composed of a single bar attached to one actuated joint, which are the minimal components 

of a DIMPLE instrument. 

Initialize the ob ject (named "stick"), and specify its shape, position and mass: 

/object/prism/create stick 

/object/stick/size 0.02 0.02 0.3 

/object/stick/position 0 0 0.15 

/object/stick/mass 2 

It can be seen here that once an object is created, it becomes part of the ose namespace. 
It can then accept ose methods which modify it. It is also immediately introduced into 

the simulation, appears on the screen, and can be touched and manipulated with the 

haptic device. Next, add a constraint (a hinge) located at the bottom of the prism, named 

"mot or" , with a damped spring response: 
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Fig. 4.5 A user playing the virtual Force Stick. 

/constraint/hinge/create motor stick yorld 0 0 0 0 1 0 

/constraint/motor/response spring 20 1 
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The constraint is located at (0,0,0) and its axis points along (0,1,0), the X-axis. This is 

the axis around which the stick will rotate. 

The constraint is defined to be between the object stick, and world, indicating a fixed 

position. The stiffness of the spring action is defined as 20 Nom/rad, and the damping 

coefficient is 1 N·m·s/rad. The object will not move in space except in rotation around the 

line segment defined by the given point and axis. The spring, named motor, will respond 

according to the given coefficients. 

To change the behaviour of the object when it is pushed or pulled by the device proxy, 

a different response message can be sent to the motor constraint. For instance, to get a 

squeeze type of response, as suggested by Verplank, a negative linear response can be used. 

/constraint/motor/response spring -10 
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Fig. 4.6 A patch in PureData which creates the Force Stick simulation. 

This will reverse the usual spring, so that the stick tends to faIl away from the original 

location, and must be pulled back to the center. "Walls" can be specified on the constraint 

so that it do es not faIl aIl the way around the hinge. No damping was specified here. 

To create a sonie response, for example, by modifying the timbre or pitch of a synthe

sizer, the foIlowing message will indicate that the system should send messages every 30 

ms: 

/constraint/motor/force/magnitude/get 30 

This will cause the force exerted by the stick's constraint to be sent to the audio system at 

regular intervals. Conversely, the force exerted on the stick itself could be retrieved by, 

/object/stick/force/magnitude/get 30 

This simple simulation shows that objects can be created, and user manipulations can 

pro duce continuous streams of data that can modulate audio parameters-in this case, the 

frequency of a sinusoid. A picture of a user manipulating the virtual Force Stick can be 

seen in Figure 4.5. A patch created in PureData which generates the simulation is shown 

in Figure 4.6. 



4 A Simulation Server for Virtual Musical Instruments 

p create box 

~ 
end /objeot/prism/areate box/bottolll 0 0 0.005 0.3 0.3 O.Oll 

end /objeot/prism/oreate box/leftside 0 -0.145 0.06 0.3 
.01 0.1 

end /objeot/prism/oreate box/riqhtside 0 0.145 0.06 0.3 
.01 0.1 

end /objeot/prism/create box/backside -0.145 0 0.06 0.01 
.28 0.1 

end /object/prism/create box/frontside 0.145 0 0.02 0.01 
.28 0.02 

Isend /constraint/universal/oreate boxhinge box world 0 0 O[ 
o 1 100 

"'- end /world/qravity -0.03l 

~ 

Fig. 4.7 The PureData patch used to generate the MarbleBox simulation. 
The audio portion of the patch is not shown here. A counting structure is 
used to generate each new marbles with a unique name. 

4.8.2 Marble Box 
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For a more complex example which might be used to test network latency iss~es, l decided to 

simulate the PebbleBox, a controller created by Q'Modhrain and Essl [73J. The PebbleBox 

is a controller using audio analysis to detect collisions between small polished pebbles, 

which can be used to excite some synthesis engine, such as physical modelling of water or 

ice cubes. In the virtual version, the pebbles are replaces with spheres which fill a box. 

A picture of an implementation in DIMPLE, using only a few messages, can be seen in 

Figure 4.7 and a screenshot is shown in Figure 4.8. Each part of the box is specified with a 

create message, which is hinged in place so that it is not affected by gravity. Marbles are 

then dropped into the box. The audio portion receives messages from DIMPLE informing 

it which objects collided and at what combined velo city. The marbles can be pu shed 

around using the haptic device. Since the CHAI proxy is a point-like sphere which makes 

interaction with spherical shapes difficult-they role away before they can be pushed-it 

has been found that it is more interesting to use an ODE body such as a sphere or cube to 
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Fig. 4.8 A screenshot of the MarbleBox graphical representation. Here, the 
light-coloured baIl represents the haptic proxy. As marbles hit each other 
and the sides, they produce triggers for a resonator-bank modal synthesis 
algorithm. 

50 

push around the marbles by "grabbing" it with the haptic proxy using a stiff spring. This 

functionality has been encapsulated in DIMPLE by specifying the message, 

/object/<name>/grab 

When an object is grabbed, it follows the movement of the haptic end effector, but it 

conversely allows the haptic device to give an impression of the object's weight and the 

feeling of bumping into other objects in the scene. 

A simple audio model was used, consisting of a decaying envelope applied to a low

frequency sinusoid, so that the spheres seemed to make a small "bumping" sound. However, 

in a later experiment, these collision messages were forwarded to a proper modal synthesis 

algorithm, running in Max/MSP on a separate computer. This seemed to give the marbles 

a perceptually metallic quality, and showed how easy it was to use OSC for easily linking to 

another synthesis engine-the PureData model was running on Microsoft Windows, while 

Max/MSP was running on a Mac on the local network. Perceptually, latency did not seem 

to be a problem. 

For comparison, two previous virtual implementations of the PebbleBox have been 

created in the Enactive Network [50]. One of these simulations used the same physical dy

namics engine (ODE) as the implementation discussed here, while the other used CORDIS

ANIMA. The ODE simulation was written in C++ and used Microsoft Direct3DSound for 
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performing spatialization on playback of soundfiles. Spatialization was controlled by the 

positions of the marbles. Similar to this simulation, the marbles could be pushed around 

with the haptic device. Hapties were implemented using OpenHaptics from SensAble. The 

CORDIS-ANIMA implementation was two-dimensional. It consisted of a large circle con

taining several smaller circles. The movement parts were executed at 3 KHz, while the 

sounding parts of the model were calculated at 30 KHz. It used an ERGOS deviee inter

facing with the simulation at 3 KHz. In contrast the ODE/Phantom simulation ran at 1 

KHz. It was reported that, "the ERGOS haptie device was quoted as providing a more 

distinct perception of the local surface properties of each of the objects," though it is not 

clearwhat aspect of the deviee, such as update rate, stiffness, or ergonomics, was most 

responsible. The report discusses an interesting aspect of this simulation which is that it 

contains the presence of both direct audio feedback related to movement as well as indirect 

feedback related to objects colliding against each other. Users found direct feedback "easier 

to understand" . 

4.8.3 Chained FM 

Since the MarbleBox was oriented around event-style data, an attempt was created to 

provide continuous control for FM synthesis. Additionally, 1 was interested to see how 

objects would behave when connected through hinges in a seriaI fashion. In Chained FM, 

each successive prism is connected to the prism to its left by a hinge. The left-most prism 

is hinged to the world. Pushing against a prism causes a chain reaction in whieh the 

other pris ms follow suit. Since each hinge is given a spring response, movement leads to 

coupled oscillating behaviour. In the case shown here, the velo city of the objects is used 

to modulate the carrier and modulator frequencies of two FM pairs. In practise, velo city 

may not be the most interesting parameter for this purpose, but it was sufficient to show 

how multi-parametric changes can be modified in a related way by coupling objects in the 

scene. A pieture of the interface is given in Figure 4.9 and the PureData patch is shown in 

Figure 4.10. 

4.8.4 Rolling BalIs and Cannon BalIs 

In collaboration with Mark Mashall and Joe Malloch, who are also students in McGill's 

Input Deviees and Musie Interaction Laboratory, we explored the use of DIMPLE for 
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Fig. 4.9 A photograph of a user interacting with Chained FM using a Sens
Able Phantom Desktop. The prism objects are connected by springs. The 
movement of these objects pro duces parametric changes in an FM synthesis 
algorithm. 
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non-haptic tasks. In one instance, we directed the gravit y vector of the MarbleBox VMI 

according to the center of balance determined by a force-sensing fioor, causing the marbles 

to roll to one side or another in correspondence with the user's posture. The ball positions 

were then used to control a spatialization algorithm. 

In another set-up, we connected several drum pads from a MIDI drum set to MaxjMSP. 

We caused balls to be created when a drum was hit, and sent fiying in a direction according 

to the position of the drum relative to the player. Again the moving position of each created 

ball was used to control spatialization. These two experiments were done for a project 

related to the gestural control of spatialization [56]. 
The advantage of using ose here was clear: since controllers for the force fioor and 

drum pads had already be created in MaxjMSP, we were able to very quickly conne ct 

previously made modules in no more than a few minutes to create new demonstrations 

that took advantage of DIMPLE's physical dynamics engine. 
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Fig.4.10 The PureData patch used to generate Chained FM. The left-most 
window shows the creation of the prism objects and their hinges. The middle 
patch shows the receiving portion, in which parameters are sent to the right
most patch, which contains the FM synthesis pairs. Here, velocity is used to 
control modulator and carrier frequencies. 

4.9 Summary 
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A system has been presented for running a haptically-enabled virtual environment in a 

pro cess which can asynchronously communicate with several existing audio software pack

ages using an increasingly well-supported communication protocol. Objects can be created 

as weIl as several types of constraints on these objects. A haptic device can be used to 

interact with these objects, allowing the sensation of touch. Properties of objects can be 

requested using the ose protocol, and used for modulating audio synthesis parameters. 
We have shown the use of the system for creating a few simple virtual musical instru

ments that can be touched. There are, however, several other constraint types to explore, 

and neither constraints between ob jects, nor the use of various constraint responses has 

been fully exploited. Future work will certainly reveal the use of these features. The next 
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chapter proposes sorne expansions to the system, and describe tentative experimental work 

which may take advantage of DIMPLE's dynamic nature and ease of use. 
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Chapter 5 

Conclusions and Future Work 

This chapter will present sorne conclusions drawn from the experience of creating this 

system, and provide an outline of sorne work to be carried out in the future which will 

make use of its unique features and also suggest the addition of new functionalities. 

5.1 Conclusions and Applications 

ln this thesis, 1 have described the system 1 developed for creating and interacting with 

physically active virtual musical instruments using haptic force-feedback technology. 

While the features offered by this software do not necessarily allow the simulation of 

aIl possible virtual instruments, it is hoped that a good cross-section of basic interaction 

paradigms can be created, as weIl as a few that would be problematic with real objects. 

Hitting gestures, plucking, pushing, and pulling are aIl possible. With sorne basic extensions 

described below in Section 5.2.3, it may be possible to take advantage of rubbing, scrubbing, 

and bowing gestures. Additionally, dynamically modifying physical parameters such as the 

gravit y vector, object mass, and stiffness, removing and adding objects in the scene, and 

creating and breaking constraints between objects can allow simulation of interactions that 

might be quite difficult to accomplish using sensors and mechanical systems. 

Haptics can provide a more immersive virtual experience. Feedback through the hap

tic channel can be a rich source of information about the interface and algorithm being 

manipulated. For virtual instruments, where the control surface is otherwise not tangible, 

providing a haptic sense of the environment can help a performer to maintain awareness of 

the metaphor that is being used to control sonic output. Multi-modal displays have applica-
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tion in psychology and music technology research, as weIl as for haptic device evaluation in 

the commercial market; if it can be shown that there are certain minimal performance mea

sures for satisfying musical control over a given virtual instrument, such as those described 

by Hayward and Astley [38], then new devices can be evaluated accordingly. The perfor

mance of a haptic device may be critical to applications such as virtual surgery, and finding 

correlations with musical interaction may be useful for manufacturers and researchers who 

need access to moderately large numbers of subjects who are skilled in gestural control. 

l hope that by providing this software to the music and research communities, it will 

help to promote the use of haptic technology for enhancing and investigating musical inter

action. While it is important to keep the limitations of pen-based haptic display in mind, 

virtualized musical interfaces provide a means of making available a practically unlim

ited set of gestural control possibilities witho~t requiring the cost and difficulty of custom 

hardware development. With haptic devices becoming available at lower cost, it is an ex

citing time to be part of this growing research community. Making haptic technology and 

physically dynamic virtual environments available to a large subset of music and audio 

software should provide a convenient means for musicians and researchers alike to explore 

the possibilities offered by it. 

5.2 Ideas for future work 

This section will present sorne ideas for expansion of the system, and ruminations on future 

research directions. 

5.2.1 Object shapes 

The given system can be used to create virtual environments which make use of a limited 

set of 3D primitives, and several available constraints can be applied to their relative or 

absolute movement. While more complicated compound objects can be created by "gluing" 

together these primitives, not aIl possible or even desirable shapes and interactions can be 

described in this way. Adding more primitives to the environment is one way to expand the 

tool box. However, the support of mesh-based objects would also be quite useful. It would 

allow manipulation of objects resembling structures in reallife or in the imagination, which 

could be designed using capable external tools. Since DIMPLE makes use of CHAI 3D, it 

would make sense to allow it to load 3DS files, which is a functionality it already supports. 
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ODE do es support physical dynamics involving mesh objects, though it is necessarily slower 

than primitive-based collision detection. It may be possible to incorporate more complex 

algorithms for fast collision handling in higher polygon environments if necessary. Prof. 

Ming C. Lin of the University of North Carolina at Chapel Hill, for example, has a large 

body of research dedicated to optimizing mesh-based collision detection [27, 35, 47, 97]. 

5.2.2 Deformable objects 

Objects in the environment are currently limited to rigid bodies, but the manipulation of 

virtual "clay" or other deformable models would provide an interesting avenue for musical 

control. Mulder found informally that deforming virtual objects in ways that seemed 

intuitively related to certain sound parameters was beneficial to performance. 

Many haptic software packages, such as OpenHaptics or the Reachin API, come with 

a demonstration of a deformable membrane. This is sometimes intended to simulate the 

ide a of poking a patient's skin with a needle in a medical simulation. However, the idea 

of injecting energy into a deformable system to cause oscillations is used by several mu

sical paradigms: the CORDIS-ANIMA and Cymatic systems use it at the level of audio 

frequency oscillations to create simulations of vibrating bodies, while Verplank's scanned 

synthesis uses large oscillations of a string model to control a related audio algorithm. 

Thus, it would seem interesting to be able to deform virtual objects within this system. 

Maintaining physical realism and supporting various types of deformation can be computa

tionally demanding, but it remains nonetheless an interesting avenue for exploration. OSC 

could likely be used to transmit the positions of an object 's vertex points without imposing 

too much overhead. 

5.2.3 Texture and friction 

Though her results were surprising, O'Modhrain [71] showed that friction certainly has an 

effect on the playability of a haptic instrument. Richard and Cutkosky [78] reviewed several 

friction models for haptics, also proposing a new one. Friction is a source of vibrotactile 

feedback which is not desirable to remove from force feedback simulations, since virtual 

objects would otherwise feel "slippery." Fortunately, CHAI 3D is already equipped to 

handle multiple friction models, but currently only provides one. Since friction has a 

particular effect in musical interactions-namely, to inject a certain pattern of energy into 
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a vibrating system-it would be interesting to add support for several friction models, and 

also to determine how best the information about micro-interactions could be summarized 

and transmitted to the audio engine. This problem has been previously investigated by 

van den Doel et al. [90], and incorporating and improving their findings would be interesting. 

Additionally, as se en in the Reachin API [77], it is possible to give objects a haptic 

texture using a bump map. These textured micro-interactions would certainly have appli

cability in musical interaction. Fine-grained textures would make an interesting study case 

for examining the importance of a haptic device's physical precision. 

5.2.4 Vibrotactile feedback 

Related to this idea, in terms of the CORDIS-ANIMA model especiaUy, is the idea that 

audio frequency vibrations contain an important portion of the energy injected into the 

system by user interaction. This audio vibration, which is what supposedly makes an 

instrument feel "warm" and "alive", and which Chafe [15] and others have shown to be 

detectable by performers, helps give a user feedback about the relationship between control 

changes and sound output. Though this project has decidedly concentrated on force feed

back over vibrotactile feedback, ignoring this rich source of information would be a mistake. 

Currently there exists software solutions aUowing pro cesses on a computer or network to 

transmit audio streams to each other with low latency. One example is the JACK system 

[23], designed on Linux but also available for Apple OS X. Providing the ability to route 

this information into the control surface or even directly into the haptic controller may be 

an interesting possibility. 

5.2.5 Experimental research 

Creating virtual musical instruments can aUow the exploration of aspects of haptic interac

tion that would be impossible with real instruments. Experimental research depends almost 

entirely on separating variables so that they can be explored in a methodical fashion. In an 

acoustic instrument, it is imposôible or very difficult to ôeparate the vibrationô of a body 

from the shape, weight, and texture of it. Even in an electronic gestural controUer, it can 

be problematic to remove the texture of the surface, the feel of buttons or often the outline 

of many types of sensors. When an instrument is completely virtualized, it can be played 

with or without being felt, and the continuum between having rich tactual information and 
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having none at aH can be explored. Haptic variables such as weight and stiffness can be 

modified independantly. 

Within the Enactive Network, cross-modal studies have been proposed such as target

finding tasks in which haptic and sonic information is modulated in various ways according 

to distance. In another discussion, it was suggested to explore the addition of auditory 

stimuli to a haptic experiment involving simulation of a virtual rolling baIl [99]. Subjects 

were able to judge the length of a virtual tube more easily when continuous haptic feedback 

was present, in comparison to only the difference in time between the beginning and end of 

the roll. Auditory feedback would provide more permutations to the experiment. Within 

my own work, 1 would like to examine how the presence of inertia and haptic contour of a 

control surface affects the playability of a musical interface, and also how the presence of 

visual stimulus affects the results. 
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ose messages implemented 

DIMPLE 

• ln 

This document specifies messages which are handled or broadcast by DIMPLE. 

A.l Global parameters 

These parameters are global to the whole simulated world. 

• /haptics/enable boolean 
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Enable the haptic device. Prior to enabling haptics, only the physics thread is run

ning. If boolean is zero, haptics will be disabled. 

• /graphics/enable boolean 

Enable the graptic window. Prior to enabling graphies, the physics thread is running 

with no visu al display. If boolean is zero, the graphies window will close. 

• /world/gravity x y z 

/world/gravity z 

Speeify the world gravit y vector. If only one parameter is specified, it is assumed to 

be the magnitude of a downward-pointing veetor. 

• /world/clear 

Clear aH objects in the world. 
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A.2 Objects 

Objects are the physical objects which move in the environment, collide with each other, 

and can be touched using the haptic proxy. 

A.2.1 Object creation 

These messages are for creating objects of simple geometric primitives. 

• /object/sphere/create name x y z 

Create a sphere named name at the given position in space, with a default radius of 

0.01. 

• /object/prism/create name x y z 

Create a prism named name at the given position in space, with a default size of 

(0.01, 0.01, 0.01). 

A.2.2 Object methods 

These messages make sorne modification to an object. 

• /object/name/destroy 

Destroy the object named name. 

• /object/name/grab 

"Grabbing" an object means introducing a stiff two-way spring between the position 

of the object and the haptic proxy object. In effect, movement of the device causes 

the object to following quickly, and movement of the object causes pulling forces on 

the end effector. The user thus feels the object's weight, and the illusion of the object 

being associated with the haptic device is created. 

• /object/name/ungrab 
If an object is grabbed, this method lets it go. 

A.2.3 Object attributes 

These messages represent an object's attributes. They can be set by sending the message 

to DIMPLE, or requested as described in Section A.4, below. 
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Object size 

• /object/name/radius radius 

/object/name/size width height depth 
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Specify the radius of a sphere or the size of a prism. The mass will be scaled corre

spondingly. 

Object materials 

• /object/name/mass mass 
The object's weight in grams. 

• /object/name/color r g b 

The object's colour in RGB values between 0 and 1. 

• /object/name/friction static dynamic 

The static and dynamic friction coefficients for name. 

• /object/name/stiffness stij jness 

The object's stiffness coefficient. 

Object movement 

• /object/name/position/magnitude magnitude 1 

/object/name/position x y z 

The object's position. Betting this attribute will "beam" it to the new position 

immediately. 

• /object/name/velocity/magnitude magnitude 

/object/name/velocity x y z 

The object's velo city. Betting this attribute will cause unnatural movement of the 

object. 

• /object/name/acceleration/magnitude magnitude 

/object/name/acceleration x y z 

lSetting a vector's magnitude will work only if the current magnitude is non-zero. 
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The object's acceleration. Setting this attribute is equivalent to applying a force 

without regard for the object's mass. 

• /object/name/force x y z 
Apply the given force vector to name, or retrieve the force applied to an object 

through collisions or interaction with the proxy object. 

A.3 Constraints 

A constraint consists of sorne way in which two objects, or one object and a fixed position, 

are related. Often this is a case where two objects are joined by sorne kind of joint, and 

the movement on said joint can be restricted or given sorne kind of response behaviour. 

A.3.1 Constraint creation 

Each constraint type requires a different set of attributes, by definition. The reader is 

refered to the Open Dynamics Engine manual [88J for more information on these constraint 

types and the attribut es they require. 

• /constraint/fixed/create name object object pointx point y pointz 

• /constraint/ball/create name object object pointx point y pointz 

• /constraint/hinge/create name object object pointx point y pointz 

axisx axisy axisz 

• /constraint/hinge2/create name object object pointx point y pointz 
axislx axisly axisl z axis2x axis2y axis2z 

• /constraint/sliding/create name object object pointx point y pointz 
axisx axisy axisz 

• /constraint/universal/create name object object pointx point y pointz 
axis lx axis ly axis lz axis2x axis2y axis2z 

In the above, object may be world, to indicate a constraint against a fixed position. 
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A.3.2 Constraint methods 

• /constraint/narne/destroy 

Destroy the constraint named narne. Note that constraints will also be destroyed if 

one of the associated objects is destroyed. 

A.3.3 Constraint responses 

Each constraint can be given a response characteristic, which specifies how it should behave 

as the user pushes the constraint away from the fulcrum of the constraint . 

• / constraint/narne/response response ... 

Where response is one of: 

- spring stij jness darnping 

Response is determined by a damped spring equation. If darnping is not speci

fied, an undamped spring is used. 

- constant value 

Response presents a constant force against the direction of movement. Feels 

similar to moving a stiff hinge. Supplying zero for value will remove any response 

so that the constraint moves freely. 

- noise threshold 

Response presents a noisy graininess in movement, like moving against sand 

paper. 

- pluck position stij jness 

Multiple pluck response messages may be accumulated at different positions. 

It corresponds to a "membrane" which gives some resistance before breaking 

through. position here is an angle in radians. stij jness is optional, and has a 

reasonable default. 

- wall position direction 

Walls delimit the range of motion for a constraint. In other words, any motion 

past the given position, in the given direction, be treated like an infinitely stiff 

spring. (In practise, a "very" stiff spring will be used.) position is an angle in 

radians, and direction is either 1 or -1. 
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A.3.4 Constraint attributes 

Constraint attributes can be set by sending the message to DIMPLE, or requested as 

described in Section A.4, below. 

• / constraint/name/force/magni tude magnitude 

/constraint/narne/force x y z 

The current force acting on the constraint. 

A.4 Requesting information 

A.4.1 Requesting attributes 

Any attribut es of objects and constraints listed in the previous section may be of interest 

to the audio and control systems. Thus any of the attributes may take the / get method 

to retrieve corresponding value. 

• ... / attribute/ get interval 

Specify interval = 0 to stop. interval may be omitted to get the attribute only once. 

The get method may include an optional interval in milliseconds which will tell the 

haptic system to report the corresponding attribute continuously at regular intervals. 

The returned attribute will have the same OSC message address, but without /get. 

A.4.2 Requesting collisions 

The following messages can be used to request collision information. Collisions currently 

provide only force information. (The repelling force magnitude required for a perfectly 

elastic collision.) 

• /object/collide/get 

/object/collide/get boolean 

Request that aIl inter-object collisions be reported. If boolean is not provided, it is 

assumed to be 1. If boolean = 0, collisions will no longer be reported. 

Collisions are reported with the message, 

/object/collide object object force 
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• /object/na~e/collide/get 

/object/na~e/collide/get boolean 
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Request that aU collisions with object na~e are reported. If boolean is not provided, 

it is assumed to be 1. If boolean = 0, collisions will no longer be reported for this 

object. 

Collisions are reported with the message, 

/object/na~e/collide force 
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