
Conceptual Integration and User Interface
Metaphor for the Multi-Touch Control of

Recorded Audio

Bruno Angeles

Music Technology Area
Schulich School of Music

McGill University
Montreal, Canada

December 2012

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts.

© 2012 Bruno Angeles

i

Abstract

The majority of touch-enabled musical production software tend to use metaphors from

professional musical studio environments in their interface (e.g., a rackmount, turntables

plus a crossfader, or a keyboard) or simply use single-finger input as a computer mouse.

We identify a need for musical software that benefits from novel graphical user interface

elements and innovative metaphors to provide control over pre-recorded music. We hy-

pothesize that a software design approach using conceptual integration, or blending, will

lead to new ludic interfaces for musical expression with the potential to facilitate DJ tasks.

Multi-touch technology offers the promise of going beyond traditional mouse-based user

interfaces, and is especially pertinent in that it provides full embodiment: the user interacts

directly with the visual feedback of the system. This change in paradigm has implications

in software design, not yet fully understood in tools for musical expression.

This thesis first documents the existing methods of implementing multi-touch technol-

ogy, before suggesting a taxonomy of multi-touch devices. A literature review of multi-touch

systems for musical applications is also presented, after which metaphor and blending (also

known as conceptual integration) are discussed. We apply blending to software design for

multi-touch musical software and introduce our programming framework, TactoSonix.

ii

Résumé

Dans leur interface utilisateur, la plupart des logiciels de production musicale pour écrans

tactiles multipoints emploient des métaphores issues des studios de musique professionnels

dans leur interface utilisateur (châssis à effets de guitare, tourne-disques, potentiomètres

rectilignes, clavier), ou utilisent un doigt qui joue le rôle de souris. Cela nous a amenés

à constater que ces logiciels gagneraient à inclure des éléments innovateurs au niveau de

l’interface utilisateur et à employer des métaphores inexplorées dans un contexte de contrôle

de morceaux de musique pré-enregistrée. Nous partons de l’hypothèse que la conception

de logiciel assistée par l’intégration conceptuelle (blending) permettra le développement

d’interfaces ludiques pour l’expression musicale et facilitera certaines tâches des DJs.

La technologie tactile multipoints nous permet d’imaginer des interfaces de logiciels

non-traditionnelles, car elle combiner les interfaces de rétroaction visuelle et de contrôle du

systême. Ce changement de paradigme nous oblige à réévaluer la conception des logiciels de

production musicale, et à étudier ses applications dans le domaine de l’expression musicale.

Ce mémoire répertorie les méthodes qui permettent actuellement de concevoir des dis-

positifs tactiles multipoints dont il propose une taxonomie. Il présente une analyse de la

littérature des systèmes tactiles multipoints dans des contextes musicaux. Les concepts de

métaphore et d’intégration conceptuelle (blending) sont étudiés puis appliqués à la concep-

tion de notre plate-forme de programmation musicale tactile multi-points, TactoSonix.

iii

Acknowledgments

The author would like to dedicate this thesis to his parents Jorge and Anne-Marie in

gratitude for their motivation and support, as well as for always insisting on the value of

education and academic dedication.

The author would like to thank his supervisor Marcelo Wanderley for his continuous

guidance, valuable advice, and patience, and his colleagues at McGill University’s IDMIL,

most notably Gabriel Vigliensoni, Joseph Malloch, Stephen Sinclair, and Marlon Schu-

macher for their advice. Martin Shank, colleague of the author, made several suggestions

for the improvement of the user interface.

The author is extremely grateful to Olivier Plante, who graciously offered his time and

industrial design expertise for the design of a DIY multi-touch table; this device was useful

in the development and testing of software as part of this thesis.

iv

Contents

1 Introduction and Context 1

1.1 Multi-touch Technology . 1

1.1.1 Definition . 1

1.1.2 Distinctions . 2

1.1.3 Historical Background . 2

1.1.4 Why Multi-Touch? . 3

1.1.5 A Confusing Third Degree of Freedom 4

1.1.6 Multi-touch vs Tangibles . 4

1.1.7 Issues in Multi-touch Interaction 4

1.1.8 Haptic Feedback . 5

1.1.9 The Do It Yourself Community . 6

1.2 Music Mixing . 6

1.2.1 Definition . 6

1.2.2 Musical Games . 7

1.2.3 The Art of DJing . 7

1.3 Hypothesis . 9

1.4 Thesis Contribution . 9

1.5 Distribution of Chapters . 9

2 Multi-touch Hardware: a Biaxial Taxonomy 10

2.1 Approach . 10

2.2 Previous Work . 10

2.3 Technological Taxonomy . 11

2.3.1 Optical Solutions . 11

Contents v

2.3.2 Capacitive Sensing . 18

2.3.3 Resistive Technology . 19

2.3.4 Magnetic Sensing . 19

2.3.5 Optical Fibre . 20

2.3.6 Acoustic Sensing . 21

2.3.7 Dispersive Signal Technology . 21

2.4 Visual Feedback Taxonomy . 21

2.4.1 Front Display Devices . 21

2.4.2 Rear Display Devices . 23

2.4.3 No Display . 23

2.5 Applying the Taxonomy . 23

2.6 Building an FTIR and RDI Multi-Touch Table 28

2.6.1 Electronic Components . 28

2.6.2 Other materials . 29

2.6.3 Prototyping . 29

2.6.4 Final Result . 29

2.7 Summary . 29

3 Multi-Touch Systems: Software Choices and a Review of Musical Appli-

cations 35

3.1 Software Choices in Multi-Touch Systems 35

3.1.1 Modular Software Design for Computer Vision 35

3.1.2 Libraries . 36

3.1.3 Selection Strategies . 37

3.1.4 Gestures . 37

3.1.5 Continuous Controls and Absolute Positioning 38

3.1.6 Innovative Controls . 38

3.2 A Review of Musical Applications on (Multi-)Touch Systems 42

3.2.1 Music Exploration . 42

3.2.2 Music Control, Sequencing, Score Editing 43

3.2.3 Music Synthesis . 44

3.2.4 Music Editing . 45

3.3 Summary . 46

Contents vi

4 Metaphors, Blending, and Software Design 48

4.1 Image Schemata, Metaphors, and Blends 48

4.1.1 The Traditional View of Metaphor 48

4.1.2 The Contemporary View of Metaphor 48

4.1.3 Blending, or Conceptual Integration 50

4.1.4 User Interface Metaphor and Blending for Software 51

4.2 Metaphor and Design . 53

4.3 Interface Metaphors in Touch-Enabled Musical Software 54

4.4 Summary . 56

5 TactoSonix: Software Design 58

5.1 Design Spaces as Informal Functional Design 58

5.1.1 Empirical Classification . 58

5.1.2 Contexts in Interactive Computer Music 59

5.1.3 Rowe’s Rough Classification . 60

5.2 Nonfunctional Design . 60

5.2.1 Multi-user . 60

5.2.2 Latency and Frame Rate . 61

5.2.3 Discrete vs Continuous Controls . 61

5.3 Designing with Blends . 61

5.3.1 Design Choices . 61

5.3.2 Metaphor One: Making music is cooking 62

5.3.3 Metaphor Two: Making music is gambling 64

5.4 Implementation . 64

5.4.1 Metaphor and User Interface . 64

5.4.2 Interaction and Visual Feedback . 68

5.4.3 Audio Environment . 70

5.4.4 Comparison with Traditional DJing Equipment 72

5.5 Technical Details . 72

5.6 Summary . 72

6 Conclusions and Recommendations 74

A Software documentation 77

Contents vii

References 79

viii

List of Figures

2.1 Illustration of Front Diffused Illumination (courtesy of Christian Moore, NUI

Group.) . 12

2.2 Illustration of Rear Diffused Illumination (courtesy of Christian Moore, NUI

Group.) . 13

2.3 Illustration of a Laser Light Plane (courtesy of Christian Moore, NUI Group.) 14

2.4 Illustration of Frustrated Total Internal Reflection (courtesy of Christian

Moore, NUI Group.) . 15

2.5 Johnstone’s Rolky [1] (courtesy of Eric Johnstone), an early implementation

of FTIR . 16

2.6 Illustration of Diffused Surface Illumination (courtesy of Christian Moore,

NUI Group.) . 17

2.7 Haken’s Continuum [2] (courtesy of Lippold Haken) 19

2.8 A 1983 prototype of the Continuum [2] (courtesy of Lippold Haken) 20

2.9 Sound Rose, an acoustic sensing touch device [3] (courtesy of Alain Crevoisier,

Cédric Bornand, Arnaud Guichard, Seiichiro Matsumura and Chuichi Arakawa) 22

2.10 Estimating the throw distance and use of a mirror in our setup 30

2.11 A view at an angle of our final piece of hardware 31

2.12 The switch that allows the user to change between FTIR and RDI 32

2.13 The VGA connector for the projector, and the USB connector of the webcam 33

3.1 Illustration of stacked half-pie menus [4] (courtesy of Tobias Hesselmann,

Stefan Flöring, and Marwin Schmitt) . 39

3.2 Illustration of the SimPress technique, with accompanying explanation [5]

(courtesy of Hrvoje Benko, Andrew D. Wilson, and Patrick Baudisch) . . . 41

List of Figures ix

5.1 The first screen of the TactoSonix cooking metaphor environment 66

5.2 A focus position resulting in an approximately equal contribution of each

audio channel . 67

5.3 The unwrapped Stacked Half-Pie Menu showing a choice of audio tracks.

The first menu represents – from left to right – lead instruments, bass, and

percussions. The second menu represents – from left to right – jazz drums,

hip hop drums, funk drums, and country drums. 68

5.4 Dragging a node around (the red square) displays visual feedback about the

associated audio track’s volume, low-pass cutoff frequency, and loop length. 70

5.5 Dragging a node around (the red hexagon) displays visual feedback about

the associated audio track’s volume and low-pass cutoff frequency, looping

being disabled due to the node being outside the looping zone of the stovetop.

The visual feedback showing that the node is not looping at one, two, four,

or eight beats, is that no crosshair is visible in the cooking pot, as opposed

to Figure 5.4. 71

A.1 Dependency graph for main.cpp, the entry point for TactoSonix. Note the

presence of the metaphorKitchen class, which most importantly includes a

Stacked Half-Pie Menu (class ofxTactoSHPM) and a stovetop (class ofxS-

toveTop). This graph shows how TactoSonix was designed to allow for the

implementation of multiple metaphors. 77

A.2 Dependency graph for ofxStovetop, the class that implements a stove top in

TactoSonix. Note the fact that the stovetop class includes the ofxPot class:

in our model, a stovetop is a cooking pot ofxPot (or kitchen burner) as well

as some stove information (see the top-left corners of Images 5.4 and 5.5) . 78

x

List of Tables

1.1 The list of features offered by DJ equipment 8

2.1 Different multi-touch hardware solutions in our taxonomy 24

5.1 An explanation of the Making music is cooking metaphor 62

5.2 The implementation of DJ equipment features in the cooking metaphor. See

Section 1.1 for an explanation of these features. 63

5.3 An explanation of the Making music is gambling metaphor. See 1.1. . 64

5.4 The implementation of DJ equipment features in the gambling metaphor.

See Section 1.1 for an explanation of these features. Note that this metaphor

is not implemented in this thesis. 65

xi

List of Acronyms

CPU Central Processing Unit

DIY Do It Yourself

DJ Disk Jockey

DOF(s) Degree(s) of Freedom

DSP Digital Signal Processing

FM Frequency Modulation

FPS Frames Per Second

GUI Graphical User Interface

HCI Human-Computer Interaction

IDMIL Input Devices and Musical Interaction Laboratory

LED Light-Emitting Diode

OSC Open Sound Control

TUIO Tangible User Interface Objects

WIMP Window, Icon, Menu, Pointing Device

1

Chapter 1

Introduction and Context

The topic of this thesis is the implementation of a recreative music production software

environment for multi-touch devices. We intend to create an environment that simplifies

certain tasks of mixing music in order to ensure the musical coherence of the resulting mix.

We focus on multi-touch technology because of its ability to combine the input and output

devices, and hope it makes our ludic music production environment more accessible than

traditional mouse and keyboard input.

To this end, we first document the methods of creating multi-touch device and present

a taxonomy of multi-touch devices. Our attention then turns to a discussion on the im-

plications of multi-touch input to software design and a literature review of multi-touch

musical software environments. We proceed to the field of cognition with a discussion of

metaphor and its application to software design. TactoSonix, our software environment, is

presented as an illustration of multi-touch software design based on metaphor.

The current chapter introduces several concepts related to multi-touch technology, while

laying out the motivation behind the reported work.

1.1 Multi-touch Technology

1.1.1 Definition

Multi-touch technology concerns both hardware and software that use finger input or the

manipulation of physical objects, as opposed to the mouse and keyboard of traditional

computers. Multi-touch interaction can be implemented with different methods and con-

1 Introduction and Context 2

figurations, described in Chapter 2.

Such devices offer the promise of moving beyond traditional WIMP (Windows, Icons,

Menu, Pointing Device) interfaces [6]. Multi-touch devices have been used in different

contexts, but our research focuses on musical applications.

1.1.2 Distinctions

Important distinctions must be made at the level of visual feedback between touch tablets

and touch screens, to follow the nomenclature presented by Buxton et al. [7]. Touch screens

provide visual input to the user, while touch tablets do not. Another possible distinction

can be made in the display method of different touch screens (e.g., LCD, projector, pico

projector, plasma).

The sensing method for finger position results in another distinction. We have docu-

mented seven different methods for the implementation of multi-touch hardware: camera-

based solutions, capacitive sensing, resistive sensing, magnetic sensing, acoustic sensing,

optical fibre, and dispersive signal technology (see Chapter 2). Although these methods

may not have much meaning to the user, the software designer must take them into account

because of their individual features and restrictions.

A third distinction stems from the support, or lack thereof, for tangible objects (also

known as graspables [8]). These are objects that can be placed on the interaction surface to

be recognized by the system. The most popular multi-touch system nowadays with support

for graspables is the reacTable [9].

1.1.3 Historical Background

Single-touch devices have been around since the 1970s. The PLATO IV system at the

University of Illinois was implemented between 1972 and 1976 [10]. In 1978, a single-

touch system [11] using strain gauges and providing visual feedback was reported, while

Sasaki et al. [12] performed early research in using single-touch pressure-sensitive tablets

for musical applications in 1981. In terms of multi-touch devices, Lee, Buxton, and Smith

disclosed a force-sensitive system with capacitive sensing in 1985; this system determined

pressure based on the deformation of the touch surface and the “intrinsic spreading of the

compressible pressure tip” [13].

Moog’s multiply touch-sensitive clavier has a design that was “based on a conventional

1 Introduction and Context 3

wood action keyboard” [14], first described in 1982. In 2005, a few months before Robert

Moog’s passing, he presented with Eaton a prototype device registering five degrees of

freedom per key [15]. Not all controls could be controlled simultaneously, since the values

tracked were “a) the left-to-right position of the player’s finger, b) the front-to-back position

of the player’s finger, c) the area of the surface of the player’s finger that is touching the

key surface, d) the depth to which the key is depressed, and e) the force with which the

key is depressed after it reaches the lower limit of its travel” [15]. This promising system

does not seem to have progressed beyond the status of prototype. Another keyboard-like

controller with multi-touch control is Haken’s Continuum [16][2].

In the mid-1990s, Pinkston et al. reported a setup using four plastic sheets equipped

with 128 Force Sensing Resistors (FSRs), for placement under a dance floor [17]. Although

not meant for manual interaction, the system was an investigation into the possibilities of

force-sensitive multi-touch technology. In 2009, Wessel performed one of his composition

for the SLABS controller; SLABS consists of 24 or 32 (there are two models) single-touch

pressure-sensitive pads that send XY coordinates and pressure information over OSC. The

control data for the three degrees of freedom of the controller is sent at an audio rate,

which “provides for a high degree of control intimacy” [18]. SLABS 32 allows multi-touch

interaction by presenting the pressure pads as an array of eight by four sensors, assembled

tightly.

Jeff Han is often credited with popularizing low-cost multi-touch devices, largely due to

the engaging software demos he presented in a breakthrough conference at TED2005. How-

ever, Johnstone’s Rolky [1] was already using the same physical concept, namely Frustrated

Total Internal Reflection (FTIR), some 20 years earlier. The Rolky is shown in Figure 2.5.

Han visited past applications of FTIR in [19] and described his own setup.

1.1.4 Why Multi-Touch?

We argue that the reason for the popularity of multi-touch interaction (observable in the

variety of tablets on the commercial market) lies in what Fishkin calls “full embodiment”:

“the output device is the input device” [20], as opposed to traditional interaction with a

computer monitor, mouse, and keyboard.

Multi-touch interaction is essentially a system with two degrees of freedom (the X and

Y coordinates of each contact point), which is extended to three degrees of freedom in

1 Introduction and Context 4

pressure-sensitive implementations.

In comparing conventional hardware and a “soft machine” [21] implemented as a touch

screen with visual feedback, Nakatani and Rohrlich argue that soft machines overcome

the limitations of hard machines, namely inflexibility and the management of complexity.

Software allows the design of evolving interfaces (“progressive disclosure of controls” [21]),

which overcomes these limitations. We argue that this “progressive disclosure of controls”,

discussed in 1983, was overlooked in favour of the WIMP paradim visible in Microsoft Win-

dows, Apple OS, and most Linux GUIs since. A reason for this choice is that the emergence

of personal computers in the 1980s and 1990s occured through office settings, and office

tasks do not require software that evolves through different states, whereas tasks such as

gaming and music production do (progress in a word processor is continuous, unlike the

discrete states visible in video games). Our view is that the “progressive disclosure of con-

trols” should be favoured in multi-touch software, given that it strengthens the immersivity

of the user experience by getting rid of the intermediary that WIMP menus represent.

1.1.5 A Confusing Third Degree of Freedom

Many papers report systems that are said to be “pressure-sensitive” [22] [23] [18], while

others use the term “force-sensitive” [24] [25]. All such systems intend to measure the

amount of movement intended by the user in the axis perpendicular to the surface. Force

cannot be measured directly: it is through its effect (e.g. the displacement of an elastic

body) that force can be estimated.

1.1.6 Multi-touch vs Tangibles

Multi-touch systems like the reacTable [9] and DiamondTouch [26] allow the recognition of

objects on the touch surface. Not all systems are capable of such recognition, our research

focusing more on the multi-touch capabilities of systems than on their support for tangibles.

Fiducials1 are graphical patterns that can be identified via computer vision.

1.1.7 Issues in Multi-touch Interaction

Sousa and Matsumoto [27] identified occlusion (when a hand hides parts of the visual

feedback), missing states (inability to detect hovering motion until contact), lack of preci-

1http://reactivision.sourceforge.net, accessed 2010/11/17

1 Introduction and Context 5

sion [sic], and pointer stability (jitter) as “natural restrictions when interacting with touch

screens”. A solution to the low resolution of such interaction can be achieved through

dual-touch interaction — see Section 3.1.6. By “precision”, both papers mean resolution,

the minimum size measured in the interaction, whereas “precision” means repeatability or

reproducibility.

Previously, Buxton [7] had also identified friction and the lack of haptic feedback as

issues in touch tablets. Although multi-touch devices can sense and track fingers, they

cannot natively identify which finger of the hand is touching the device. Multi-touch

systems enhanced with above-table hand tracking (often performed via computer vision)

could be able of such identification.

As can be seen in Chapter 2, multi-touch hardware can provide visual feedback in

two ways: front projection and rear projection (it is also possible not to have any visual

feedback). It can be argued that occlusion is an issue in both front-projected and rear-

projected setups: fingers can block the user’s view in both cases, but it is only in front-

projected setups that the user’s hands can block the visual feedback and not its perception

by the performer.

1.1.8 Haptic Feedback

At the moment, localized haptic feedback on multi-touch devices is not yet widespread,

although many portable touch-enabled devices include a haptic actuator. Device-wide

haptic feedback is already possible on commercially-available mobile phones. MudPad [28]

is an example of a system implementing localized active haptic feedback. Verrillo’s work

from the 1960s to the 1990s [29] explored the detectability thresholds of human vibrotactile

sensation and the use of such feedback in controlling a musical instrument. Interestingly,

Verrillo demonstrated variations in sensitivity to haptic feedback in different age groups.

He also observed that most studies of the tactile sensation are based on the hand and arm,

members that are involved in sound production and control in most instruments.

Chafe [30] described the psychophysics of vibrotactile sensation in humans by per-

forming an experiment with a cellist wearing an accelerometer on a fingernail to control

the oscillating nonlinear physical model of a brass instrument. Chafe’s work emphasized

the pertinence of vibrotactile feedback in new interfaces for musical expression. In music

technology, Birnbaum and Wanderley [31], as well as Giordano and Wanderley [32], have

1 Introduction and Context 6

previously studied applications of haptic feedback to musical instruments and controllers.

1.1.9 The Do It Yourself Community

Many DIY approaches for building multi-touch hardware are displayed on websites. Com-

munities such as NUI Group2 provide support to multi-touch enthusiasts. A technical

guide with the descriptions of problems and their solutions, as well as assembly tips, was

put together by Schöning et al. [33].

Smith et al.’s low-cost malleable system [22] builds upon Jeff Han’s design [19], by

reportedly reducing hysteresis and sensing touches of near-zero force.

A more advanced low-cost touch system is Bottoni et al.’s TouchBox [34], which used a

single-touch screen and a DSP board. Bricktable [35] is a system that was assembled using

low-cost materials. The authors provided a thorough explanation of the issues they faced,

and solutions to problems such as infrared hot spots, low light diffusion in the projection,

and the choice of a protective layer for the touch table.

Loviscach [36] reported a method using electronic components for converting an inex-

pensive single-touch screen overlay into a dual-touch system.

1.2 Music Mixing

1.2.1 Definition

We define DJing as the art or task of mixing music, commonly performed using turntables

and musical software. Similarly, Carrascal and Jordà define audio mixing as “the adjust-

ment of relative volumes, panning and other parameters corresponding to different sound

sources, in order to create a technically and aesthetically adequate sound sum” [37], and

Beamish et al. state that “A disc jockey (DJ)’s primary job is to play pre-recorde music at

social occasions such as dances or weddings, and in performance venues like dance clubs.

It was once sufficient to simply play one song after another, but at least one branch of

DJing has evolved into an expressive art form where DJs mix song fragments using special

interactive techniques, creating entirely new music in a live performance that is an auditory

and visual spectacle.” [38]. This type of DJing, referred to as scratching and turntablism,

is not the focus of this thesis. Our interest resides in restricting the user to interactions

2http://nuigroup.com/forums, accessed 2010/11/17

1 Introduction and Context 7

that ensure an aesthetically pleasant sound. We do not hope to replicate DJing hardware

in software so as to provide the same kind of complex control over sound, but rather to put

in the hands of the average person some DJing tools (e.g., crossfader, frequency domain

filtering) that would otherwise be out of their reach in terms of technical prowess or musical

production expertise. For information about turntablism techniques, we refer the reader to

[39] and [40]. A brief comparison of our software and traditional DJ equipment is presented

in Section 5.4.4.

1.2.2 Musical Games

Ludic environments for the creation of music from predetermined sources can be traced

back at least to 18th century dice games for the composition of “minuets, marches, waltzes,

contredanses” in Europe [41]. These games allowed musical novices to compose music that

could then be performed by musicians. These musical games were played by throwing two

dice and using a lookup table to figure out which measure of the source composition to

use in the new composition. Through careful (and restrictive) composition, a single piece

of music could generate billions of possibilities. Played with two dice, the sum of which is

always between two and 12 (giving 11 possibilities), and a game for 16 measures of music,

there are 11ˆ16 possible outcomes, almost guaranteeing the unicity of each composition. It

is worth noting that the probabilities of the different totals are not equal. Combined with

the possibility of duplicates in the lookup table, this use of probabilities suggests a certain

guidance to the composer of the game.

1.2.3 The Art of DJing

The task of controlling pre-recorded audio contents originated with the hardware solutions

for radio transmission at the turn of the 20th century, but did not develop into a fully

creative process until the advent of musique concrète, when Pierre Schaefer controlled the

playback speed and used reverse playback as well as looping on his Etude aux chemins de

fer [42] in the 1940s. The emergence of hip hop and DJ culture in the late 1970s cemented

the role of turntables and mixers as legitimate instruments in this underground culture.

These DJ tasks can nowadays be assisted by software. Some products, such as Native

Instruments Traktor 3, extend the functionalities of the initial DJ setup of two turntables

3http://www.native-instruments.com/#/en/products/?category=1316, accessed 2011/07/20

1 Introduction and Context 8

and a mixer with a combined hardware and software solution. The additional features

include a loop recorder, sample triggers, audio effects, and “on-the-fly remixes”. Another

popular DJ tool, Ableton Live4, allows users to arrange entire compositions, and has some

of the features of Traktor, with the added functionality of mixing more than four tracks.

The features of a basic DJ setup are displayed in Table 1.1.

Feature Description
Channels and tracks DJs typically work with two different audio tracks.

When more tracks are needed, they can be grouped in
channels.

Crossfading A single slider to control the weight of the two tracks
being mixed.

Cues DJs use cue points to skip to a particular part of a track.
Cues do not necessarily have to fall on a beat, and play-
back continues after the cue.

Volume Each track has a volume slider to control its amplitude.
Bass, mid, and high filters Low pass, band pass, and high pass filters that can be

applied on each track for quick frequency equalizing.
Audio effects Aside from a simple equalizer, DJs also have access to

audio effects such as a flanger, the gater effect, reverb,
and a ring modulator.

Pitch shifter DJs can change the pitch of a track using a slider without
changing its tempo.

Tempo shifter DJs can change the tempo of a track using a slider with-
out changing its pitch.

Song syncing DJs can sync the beat of different tracks. Traditionally
performed by ear, this task is now automated in certain
pieces of software.

Looping DJs can create local loops inside a track. Loops can be
manually defined, or use standard beat units.

Sequencing Instead of recreating all elements of their mix during a
performance, some DJs opt to use a sequencer to arrange
pre-recorded musical elements, some of which may be of
their own composition.

Table 1.1 The list of features offered by DJ equipment

4http://www.ableton.com/suite-8, accessed 2011/07/21

1 Introduction and Context 9

1.3 Hypothesis

We put forward the hypothesis that the use of user interface metaphors unrelated to con-

ventional musical hardware, combined with innovative (non-WIMP) GUI controls, provides

a basis for the development of multi-touch software that facilitates certain DJ tasks.

Our approach will be to use blending, or conceptual integration, to design new environ-

ments that will be less intimidating than professional music production systems by taking

advantage of more familiar conceptual frames.

1.4 Thesis Contribution

The contribution of this thesis to the music technology community will be an investiga-

tion into the design of music mixing software using metaphor (a way of thinking about

one domain in terms of another – see Section 4.1) and conceptual integration (similar to

metaphor, but the two domains are applied to form a third and fourth one – see Section

4.1.3). We will also provide a taxonomy of multi-touch hardware, and a literature review

of musical touch-based software environments.

1.5 Distribution of Chapters

This chapter discussed multi-touch technology, DJing, and our motivation. Chapter 2

describes a taxonomy of multi-touch hardware. Chapter 3 discusses the software consid-

erations and possible GUI controls of multi-touch systems, as well as presenting a review

of touch-enabled musical software. Chapter 4 investigates the concepts of metaphor and

conceptual blending. Chapter 5 documents our software design approach. Chapter 6 con-

cludes this document by summarizing our results and contributions, besides recommending

further related work.

10

Chapter 2

Multi-touch Hardware: a Biaxial

Taxonomy

This chapter introduces a taxonomy of multi-touch hardware based on two axes: the tech-

nology used to implement multi-touch capability, and the visual feedback provided. We

also apply the taxonomy to existing devices, before introducing our own hardware.

2.1 Approach

We distinguish multi-touch devices from one another based on the technology used. We have

identified the following techniques: camera-based solutions, capacitive sensing, resistive

sensing, magnetic sensing, acoustic sensing, optical fibre, and dispersive signal technology.

Although these methods describe the physical principles of interaction with the devices,

a user might make different distinctions between them, essentially in the visual feedback

provided. For this reason, we describe a bidimensional taxonomy: one axis is based on the

technology used, while another refers to the visual feedback provided.

2.2 Previous Work

We point the reader towards Hurtienne and Israel’s research [43] concerning taxonomies for

tangible interfaces, and towards Kammer et al.’s work [44] for a taxonomy of multi-touch

software. Hurtienne and Israel use orientational and ontological metaphors (see Section

4.1.2) to build their taxonomy, while Kammer et al. insist on technical features such as

2 Multi-touch Hardware: a Biaxial Taxonomy 11

support for certain protocols and type of GUI widgets. Our taxonomy will focus on multi-

touch rather than tangible interaction, and on hardware rather than software.

Well before the widespread use of multi-touch devices, Pickering [45] provided a review

of technologies for touch sensing. Pickering describes systems using infrared energy, resistive

sensing, capacitive sensing, and acoustic surface wave sensing. Pickering also mentions a

system called “velocity touch sensing”, based on piezoelectric sensors but unable to track

a moving finger on the surface.

In terms of hardware, Hinckley and Sinclair [46] provided an early taxonomy of touch-

enabled devices at the turn of the twenty-first century, in addition to augmenting computer

mice with capacitance sensors. This taxonomy identifies multi-touch devices as “multi-

channel”. Its main axes are contact versus non-contact, and discrete versus continuous

sensing.

2.3 Technological Taxonomy

2.3.1 Optical Solutions

Optical solutions provide a convenient approach to multi-touch sensing: the blobs’ positions

and dimensions merely need to be extracted from camera frames, using common computer

vision algorithms and filters, such as background removal (the difference between the live

feed and a reference background with no activity). Some solutions use infrared energy to

track blobs, while others use the visible spectrum. In addition to being widely available and

affordable, most cameras inherently view the near infrared. In some cases, their infrared

filter can readily be replaced by a visible light filter for better results. This makes this

type of implementation a good choice for prototyping, the main obstacle then being the

low frame rate of some of these cameras.

Front Diffused Illumination (FDI) is a method using the near-infrared spectrum and

an infrared camera to detect finger positions. In it, infrared light from the environment is

used to provide contrast on the touch surface where the fingers are placed. The camera

vision software then needs to track the dark blobs. This is shown in Figure 2.1. This setup

is so simple that it can be implemented with a piece of glass, thin paper, a webcam, and a

cardboard box to host the camera. Its main drawback is the specific lighting environment

required for proper functioning, although it is true that this restriction applies to most

2 Multi-touch Hardware: a Biaxial Taxonomy 12

Fig. 2.1 Illustration of Front Diffused Illumination (courtesy of Christian
Moore, NUI Group.)

camera-based systems.

Rear Diffused Illumination (RDI) is based on similar principles as FDI, but uses infrared

sources placed below the touch surface, as opposed to infrared energy in the environment.

Due to the touch surface transparency (it is often made of glass or acrylic), the infrared

energy is not reflected back to the camera until a finger (or potentially another object)

is placed on the surface. In this case, the camera will see white blobs, the opposite to

black blobs in FDI. The table setup is shown in Figure 2.2. As with FDI, this approach

requires specific lighting conditions. Its potential for the identification of fiducial markers on

tangibles has made it the method of choice for the reacTable [9] and Microsoft Pixelsense1

(previously Microsoft Surface).

A Laser Light Plane (LLP) can also be used to provide infrared energy to be reflected

towards a camera. This method shines infrared energy on a plane slightly above the touch

surface. When fingers appear on the surface, they reflect that energy towards a camera, and

signal processing techniques allow the tracking of blobs; the latter can be done from above

the table, as Crevoisier and Kellum showed [47], or below it, as in Montag et al.’s first-

generation LLP table [48]. Interestingly, Crevoisier and Kellum’s LLP setup was enhanced

with “[...] acoustic onset detection in order to get precise timing information. In addition

to fingers, our system can detect oblong objects striking the surface, like sticks and mallets,

and it also measures the intensity of taps or impacts [...]” [47].

1http://www.microsoft.com/en-us/pixelsense/default.aspx, accessed 2012/08/02

2 Multi-touch Hardware: a Biaxial Taxonomy 13

Fig. 2.2 Illustration of Rear Diffused Illumination (courtesy of Christian
Moore, NUI Group.)

2 Multi-touch Hardware: a Biaxial Taxonomy 14

Fig. 2.3 Illustration of a Laser Light Plane (courtesy of Christian Moore,
NUI Group.)

2 Multi-touch Hardware: a Biaxial Taxonomy 15

Fig. 2.4 Illustration of Frustrated Total Internal Reflection (courtesy of
Christian Moore, NUI Group.)

2 Multi-touch Hardware: a Biaxial Taxonomy 16

Fig. 2.5 Johnstone’s Rolky [1] (courtesy of Eric Johnstone), an early imple-
mentation of FTIR

2 Multi-touch Hardware: a Biaxial Taxonomy 17

Frustrated Total Internal Reflection (FTIR) is a popular camera-based method for finger

tracking. It consists in combining light energy with a sheet of glass or acrylic. Recent

implementations [9] use the infrared spectrum, while early systems relied on visible light

[1]. The diode energy is kept inside the glass or acrylic by the optical characteristics of

the sheet and surrounding environment, until fingers reflect part of that energy towards a

camera under the touch surface. FTIR is illustrated in Figures 2.4 and 2.5.

Fig. 2.6 Illustration of Diffused Surface Illumination (courtesy of Christian
Moore, NUI Group.)

Diffused Surface Illumination (DSI) is another camera-based solution. It is very similar

to FTIR in that it uses an array of infrared LEDs, but it varies in the type of acrylic used.

The acrylic chosen has the property of spreading the infrared energy evenly throughout the

sheet (see Figure 2.6), thereby giving clearer blobs than FTIR.

Stereoscopy is a technology that uses two cameras to identify the position of objects.

When combined with a holographic film that reflects light at a certain angle, as in Microsoft

Research’s TouchLight [49], a partly transparent projection screen can be obtained. This

2 Multi-touch Hardware: a Biaxial Taxonomy 18

is made possible by a holographic rear projection screen providing a 30°incline. In addition

to blob tracking, TouchLight can scan documents placed on the touch surface and sense

tapping through a piezoelectric sensor.

Multi-touch sensing using 3D cameras such as the Microsoft Kinect2 is a more recent

method of tracking finger movement. A more portable implementation of this principle is

Harrison et al.’s OmniTouch [50], a shoulder-mounted system that used a picoprojector and

a short-range depth camera. Years before 3D cameras appeared on the consumer market

to facilitate finger tracking, Letessier and Bérard showed multi-touch sensing based on 2D

image processing with the possibility of tracking more than 20 fingers [51].

2.3.2 Capacitive Sensing

Capacitive sensing measures changes in the capacitance of electronic circuits to identify the

position of fingers. It is used by the iPad3 and DiamondTouch [26], among other devices.

The characteristics of capacitive sensing and the multiplexing of data were used by Dietz

and Leigh to implement DiamondTouch a multi-user, multi-touch system.

Apple’s devices use an array of capacitive sensors that detect the positions of points,

while DiamondTouch combines antennas and capacitive coupling to detect which user is

touching the surface. The latter system can only detect two fingers, one for each user. It

is therefore more of a multi-user single-touch setup than a genuine multi-touch setup.

In the mid-1980s, researchers at the University of Toronto [13] implemented a recursive

scanning algorithm for the quick identification of finger positions on a capacitive sensing

setup.

Jones et al. designed a low-cost multi-touch surface using capacitive sensing [52], based

on design goals related to spatial sampling frequency, cost, and size.

Capacitive sensing has the advantage of supporting several interaction techniques such

as hovering gestures and shape-based manipulation [53]. PocketTouch [54] was an illustra-

tion of capacitive sensing through fabric for multi-touch interaction with a handheld device.

It allowed users to type text using gesture recognition. A study of the signal strength for

more than twenty fabrics was also included.

2http://www.xbox.com/en-CA/Kinect, accessed 2012/03/17
3http://www.apple.com/ipad/specs, accessed 2012/03/07

2 Multi-touch Hardware: a Biaxial Taxonomy 19

2.3.3 Resistive Technology

Jazzmutant’s Lemur controller uses PMatrix resistive technology4. Like capacitive sensing,

resistive technology can recognize objects such as styli and pens.

Freed reviewed [55] electronic circuits adapted for multi-touch sensing based on resistive

technology. Particular emphasis was placed on shielding components and building energy-

efficient circuits, major concerns in instruments meant for travel.

Wessel et al. [24] introduced the design and calibration of a force-sensitive system based

on resistive technology. Of particular interest is the description of their method for cali-

brating the device, using a force hammer hitting the user’s fingernails, in order to make the

sensors linear. SLABS[18] is a similar system, also presented by Wessel; it was discussed

in Section 1.1.3.

2.3.4 Magnetic Sensing

Fig. 2.7 Haken’s Continuum [2] (courtesy of Lippold Haken)

It is also possible to implement multi-touch systems with magnetic sensing. The Con-

tinuum [2], designed at the University of Illinois, uses a Hall effect sensor, as is evident from

Figure 2.7. An important feature of the Continuum is that it is genuinely pressure-sensitive,

4http://www.stantum.com/en/offer/pmatrix, accessed 2012/08/02

2 Multi-touch Hardware: a Biaxial Taxonomy 20

whereas camera-based solutions merely infer pressure from blob area. The Continuum is

used to navigate a tridimensional timbre space.

Fig. 2.8 A 1983 prototype of the Continuum [2] (courtesy of Lippold Haken)

Interestingly, one of the initial designs of the Continuum used Rear Diffused Illumina-

tion, and another design used resistive technology (conductive rubber) [16]. An illustration

of a 1983 prototype of the Continuum is shown in Figure 2.8.

2.3.5 Optical Fibre

Yet another approach to multi-touch technology consists in using the physical properties

of optical fibre. The MTC Express [56], from the now-defunct company Tactex Controls,

used technology licensed by the Canadian Space Agency to perform multi-touch sensing. A

pressure-sensitive device, it had optical sensors that detected the deformation of the optical

fibre by measuring the amount of light that went through the fibres, at a rate of 200 Hz.

2 Multi-touch Hardware: a Biaxial Taxonomy 21

2.3.6 Acoustic Sensing

Different single-touch systems use acoustic sensing to identify the position of fingers on a

projection surface: Sound Rose [3] (shown in Figure 2.9), Herot and Weinzapfel’s touch

sensitive digitizer from Instronics Ltd. [11], and Albinsson and Zhai’s device from Mass

Multimedia, Inc. [57]. They are based on the propagation of waves when fingers hit the

touch surface and move on it. This principle was explained and used as early as 1969 [58].

Combined with classifiers, a system based on acoustic sensing can even recognize the

part of the finger that was used in multi-touch interaction, as in TapSense [59]. This system

recognized the nail, tip, pad, and knuckle of the finger. It accomplished the classification

using Support Vector Machines (SVMs). As well as human fingers, the authors indicated

that tools of different materials could be used on such a surface.

2.3.7 Dispersive Signal Technology

Dispersive Signal Technology (DST) is a recent method developed by the 3M Company

[60]. It uses the principle of dispersion, according to which the speed of travelling waves in

a solid is a function of the underlying wavelength. Tapping the screen or moving a finger

on it causes waves of different frequencies to travel through the surface, while piezoelectric

sensors convert the mechanical energy to electrical energy for processing in order to estimate

the position of fingers based on the phase differences in the incoming waves.

This technology works even with static objects placed on the surface; it is reportedly

very resistant to dirt and grease. DST is slightly different from acoustic wave sensing:

“Bending waves differ from surface waves in that they traverse through the thickness of the

panel rather than the surface of the material, which provides several important advantages

including enhanced palm rejection and superior scratch resistance.” [60]

2.4 Visual Feedback Taxonomy

2.4.1 Front Display Devices

Given the long throw distance of commercial projectors up until recently, one can under-

stand the motivation for projecting the visual feedback from above the touch surface. An

issue with such a method is occlusion (see Section 1.1.7), as manual interaction on the

surface will prevent the projected data from being properly displayed. This configuration

2 Multi-touch Hardware: a Biaxial Taxonomy 22

Fig. 2.9 Sound Rose, an acoustic sensing touch device [3] (courtesy of
Alain Crevoisier, Cédric Bornand, Arnaud Guichard, Seiichiro Matsumura
and Chuichi Arakawa)

2 Multi-touch Hardware: a Biaxial Taxonomy 23

has the advantage that any surface could potentially be used for projection, making it a

very robust display setup.

2.4.2 Rear Display Devices

A rear display setup eliminates the problem of occlusion (see Section 1.1.7), but requires

more maintenance and calibration, in addition to being harder to assemble with DIY means.

Rear display setups require a projection surface. An innovative installation was Microsoft’s

switchable projection screen in SecondLight, which “can be made diffuse or clear under

electronic control” [61] at a rate that is imperceptible to humans. This allows for the

recognition of objects on the table and the projection of specific contents onto those objects,

while regular visual feedback is displayed on the table. SecondLight supported the tracking

of mobile projection surfaces, including the correction of the projected image so that the

viewing position of the mobile surface can be changed in three dimensions.

2.4.3 No Display

In some cases, multi-touch technology is implemented without visual feedback. Sometimes

visual feedback is not required for the system, although the affordability and availability

of projectors mean that a touch-sensitive system can be made front-projected with relative

ease. For some technologies [2] [56], rear projection provides a major challenge due to the

nature of the sensing technology.

2.5 Applying the Taxonomy

In this section, we place selected hardware within this bidimensional taxonomy. In order

to provide additional information about the hardware, we include the items below for each

entry, whenever it is available:

A) The maximum number of fingers supported by the device;

B) The dimensions of the touch interface;

C) The sensing of hovering motion;

D) The support of fiducials or tangibles.

2 Multi-touch Hardware: a Biaxial Taxonomy 24

Table 2.1: Different multi-touch hardware solutions in

our taxonomy

Rear Display Front Display No Display

Camera-

based:

FTIR

Han’s TED2005

setup [19], 2005

The Rolky [1], 1985 Unknown to author

A) Limited by camera

resolution

A) Limited by camera

resolution

B) 406mm x 305mm

acrylic sheet

B) “1/4 the area of

a 24 inch diagonal

CRT”

C) No C) No

D) No D) No

Camera-

based: RDI

reacTable [9], 2005 Uncommon because

rear infrared illumi-

nation facilitates rear

projection

Haken’s first Con-

tinuum prototype

[16], 1992

A) Limited by camera

resolution

A) Continuous control

B) 850mm diameter,

1024x768 pixels5
B) Unknown

C) No C) No

D) Yes D) Possible in theory

Camera-

based: LLP

Montag et al.’s

LLP prototype [48],

2011

Unknown to author Crevoisier and

Kellum’s table [47],

2008

A) Unkown A) Unknown

B) Unknown B) Estimated to about

914mm x 610mm

C) No C) No

Continued on next page

5http://www.reactable.com/products/live/tech-specs, accessed 2011/12/08

2 Multi-touch Hardware: a Biaxial Taxonomy 25

Table 2.1 – Continued from previous page

Rear Display Front Display No Display

D) No D) No

Camera-

based:

Stereoscopy

Microsoft Re-

search’s Touch-

Light [49], 2004

Unknown to author Unknown to author

A) Unspecified (all

contact on the plane

can be sensed)

B) The interface is of

the order of several

feet wide and tall.

C) Yes

D) Yes

Camera-

based:

Depth

Sensing

Unknown to author OmniTouch [50],

2011

Letessier and

Bérard’s system

[51], 2004

A) At least two fingers A) More than 20

B) Projected onto

limbs and walls using

a picoprojector

B) 1000mm by 750mm

C) Yes (clicking is de-

tected)

C) No

D) No D) No

Capacitive

Sensing

iPad 36, 2012 DiamondTouch [26],

2011

PocketTouch [54],

2011

A) Maximum 11 fin-

gers

A) More than one fin-

ger per user

A) Screenshots show

three fingers

B) 246mm diagonal,

2048x1536 pixels

B) About 800mm x

480mm

B) 46mm x 97mm

Continued on next page
6http://www.apple.com/ipad/specs, accessed 2012/03/07

2 Multi-touch Hardware: a Biaxial Taxonomy 26

Table 2.1 – Continued from previous page

Rear Display Front Display No Display

C) No C) No C) No

D) No D) Possible with cus-

tomized objects

D) No

Resistive

Sensing

Lemur7, 2004 Unknown to author Haken’s second

Continuum proto-

type, 1992 [16]

A) Reportedly unlim-

ited, in practice the

surface gets crowded

at 10 fingers

A) Continuous control

B) 304mm diagonal,

800x600 pixels

B) Unknown

C) No C) No

D) No D) Possible if the ob-

jects cause a displace-

ment of the rubber

Magnetic

Sensing

Unknown to author Unknown to author Haken’s Contin-

uum [2], 1997

A) Continuous con-

trol, has the form fac-

tor of a keyboard (10

fingers)

B) Full size: 1370mm

x 190mm

Half size: 720mm x

190mm8

C) No

D) No

Continued on next page

7http://www.jazzmutant.com/lemur features.php, accessed 2012/08/01
8http://www.hakenaudio.com/Continuum/hakenaudiooverva.html, accessed 2011/12/09

2 Multi-touch Hardware: a Biaxial Taxonomy 27

Table 2.1 – Continued from previous page

Rear Display Front Display No Display

Acoustic

Sensing

TapSense [59], 2011 Sound Rose [3], 2006 Unknown to author

A) Shown using four

fingers (adding fingers

increases the risk of

“timing collisions”[3])

A) One finger

B) 1100mm x 750mm B) 800mm x 600mm

C) No C) No

D) Yes (RDI proto-

type)

D) asd

Optical

fibre

Unknown to author Unknown to author MTC Express [56]

A) Practical limit of

about four fingers.

B) 145mm x 95mm

C) No

D) Possible with ma-

terials of the proper

weight and reflectivity

Dispersive

Signal Tech-

nology

3M Technology [60],

2008

Unknown to author Unknown to author

A) Unknown

B) Scalable to sizes

above 812mm diame-

ter

C) No

D) No (tolerant to

static objects)

2 Multi-touch Hardware: a Biaxial Taxonomy 28

The results of this classification are presented in Table 2.1, in which the technology axis

corresponds to rows and the visual feedback axis to columns.

2.6 Building an FTIR and RDI Multi-Touch Table

This section details the construction of a multi-touch table that spans different regions of

our taxonomy. At the start of the author’s research as part of this thesis (September 2009),

no affordable (around 1,000 CAD) touch devices with rear display and the form factor of

a coffee table or desk were available on the commercial market. Tablets had not appeared

on the market as consumer products either. As such, the author decided to build a touch

table from scratch, with an input connection for display and an output connection for touch

signals. The hardware could then be connected to a computer for software development.

The design and choice of materials was done pro bono by Olivier Plante, graduate

student in Industrial Design at the Université de Montréal in Montreal, Canada. All

electronics were designed and assembled by the author.

2.6.1 Electronic Components

The electronic components used in the system are:

� More than twenty KIE-7305 Infrared LEDs: 840 nm wavelength, 1.5 V at 50 mA;

� Optoma ES522 Projector: 2,800 Lumens, 1.2 m minimum throw distance, 4:3 aspect

ratio;

� PlayStation Eye webcam: 640x480 pixels or 320x240 pixels, frame rate up to 100

FPS;

� A computer fan to provide air movement inside the table;

� Various resistors, capacitors, switches, and toggles, to provide energy for the FTIR

and RDI setup.

The projector was chosen in the Fall of 2009 based on its low price, and despite its

relatively long throw distance for the purpose of building a touch table.

2 Multi-touch Hardware: a Biaxial Taxonomy 29

2.6.2 Other materials

Other materials were used for the structure of the table:

� Russian cherrywood plywood for the bottom part of the table: chosen for its aesthetic

quality and low price;

� Maple for the top part of the table: chosen for its strength and texture;

� Wood stain and varnish for a nice finish.

2.6.3 Prototyping

A first test needed to be done in order to validate the use of a mirror for the projection, and

to estimate a reasonable throw distance using the mirror. This setup is show in Figure 2.10.

An initial prototype was built out of foam, in order to investigate the ergonomy of the

project. This led us to rethink the form of the table.

2.6.4 Final Result

The final setup is shown in Figures 2.11.

Figure 2.12 shows the switch on the table that allows the system configuration to be

changed between FTIR and RDI, while Figure 2.13 shows the VGA and USB connectors of

the system. The VGA connector is an input to the table (to project visuals onto the table

top), while the USB connector is an output (it sends the webcam image to a computer for

processing).

2.7 Summary

This chapter introduced a biaxial taxonomy of multi-touch hardware. This taxonomy is

based on the various methods of implementing multi-touch technology and the visualiza-

tion playback of the hardware. It shows the variety of methods that can be used to provide

multi-touch interaction. We placed existing hardware within this taxonomy, adding ex-

tra information (number of fingers sensed, dimensions, sensing of hovering gestures, and

support for tangibles or fiducials) to each entry when possible.

2 Multi-touch Hardware: a Biaxial Taxonomy 30

Fig. 2.10 Estimating the throw distance and use of a mirror in our setup

2 Multi-touch Hardware: a Biaxial Taxonomy 31

Fig. 2.11 A view at an angle of our final piece of hardware

2 Multi-touch Hardware: a Biaxial Taxonomy 32

Fig. 2.12 The switch that allows the user to change between FTIR and RDI

2 Multi-touch Hardware: a Biaxial Taxonomy 33

Fig. 2.13 The VGA connector for the projector, and the USB connector of
the webcam

2 Multi-touch Hardware: a Biaxial Taxonomy 34

We also described our approach when designing our own DIY multi-touch hardware

system. Our hardware platform supports both FTIR and RDI interaction, thereby allowing

us to support the tracking of fiducials.

In the next chapter, we will consider software issues in multi-touch installations and

review music-based touch-enabled applications.

35

Chapter 3

Multi-Touch Systems: Software

Choices and a Review of Musical

Applications

Having seen different approaches to implementing multi-touch hardware, we now turn to

aspects of software that must be considered when designing multi-touch applications, some

of which also apply to other controllers. We then present new GUI controls that could be

used in multi-touch software, before exploring different categories of existing touch-enabled

musical applications, based on the main task they facilitate: music exploration, sequencing

(and production), synthesis, and editing.

3.1 Software Choices in Multi-Touch Systems

3.1.1 Modular Software Design for Computer Vision

Given the widespread use of webcam-based solutions to implement low-cost DIY multi-

touch technology, it was only natural that video processing applications would emerge as

black box solutions to provide multi-touch event information to accompanying software.

Software such as Community Core Vision (aka tbeta)1 or reacTIVision2 are solutions

that integrate filtering, alignment, and calibration to identify both fingers and fiducials

1http://ccv.nuigroup.com, accessed 2010/11/17
2http://reactivision.sourceforge.net, accessed 2010/11/17

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 36

in multi-touch camera-based systems. The main benefit of such applications is that they

remove the need to implement low-level features, at the cost of a more complicated installa-

tion pipeline. Since their source code is available, it is possible to integrate these solutions

into your own software, but this might force the programmer to work in a very specific

environment (as is the case with Community Core Vision, which uses a customized version

of OpenFrameworks). These applications output the blob data to a network device, using

the TUIO protocol [62] for instance, based on OSC communication.

A modular design allows the use of different software frameworks, possibly in different

programming languages, on different machines running different operating systems. In this

manner, computer vision operations can be separated from the GUI processing and audio

playback, if needed due to limited hardware resources.

It is worth noting that modular software pipelines are not exclusive to computer vision

software. Musical performance is often accomplished using different software environments,

sometimes at the same time during performance. An example of a tool that facilitates this

combination of software environments is Max for Live3, which facilitates communication

between Max/MSP and Ableton Live, two popular musician tools.

3.1.2 Libraries

Some software libraries provide an abstraction layer of touch events so that the blob in-

formation does not need to be interpreted, and instead appears more conveniently in the

programming environment.

This is the case of PyMT 4, a library for Python. LightTracker [63] was a multi-touch

programming framework for systems based on computer vision. It was compared to existing

frameworks to highlight its features, namely its customizable filter pipeline, support for

multi-threaded architectures, and own calibration module. The authors also provided a

review of existing low-level (BBTouch, Touch, CCV, movid, reacTIVision) and high-level

libraries (DiamondSpin SDK, Microsoft Surface SDK, Squidy, PyMT).

Kammer et al. have suggested a taxonomy for multi-touch software frameworks [44]. It

has three axes: architecture (e.g., platform, support for gesture and TUIO), scope (e.g.,

support for tangibles, the parameters of each blobs), and features (e.g., GUI controls, ease

of integration).

3http://www.ableton.com/maxforlive, accessed 2012/08/10
4http://pymt.eu, accessed 2010/11/17

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 37

Kellum and Crevoisier’s SurfaceEditor [64] introduces the concept of a chain of event

filters. Their types are parameter filters (looking at the characteristics of blobs), ordering

filters (to prioritize certain events), count filters (to follow the number of fingers on a

component, for instance), and temporal filters (to track the timing of events).

3.1.3 Selection Strategies

As with other input devices, different selection strategies are available in multi-touch sys-

tems. Potter et. al [65] present take-off, first-contact, and land-on, while Sears and Schnei-

derman [66] also mention the existence of other strategies requiring a second touch.

3.1.4 Gestures

Although blob position, size, and acceleration are simple parameters to use in software

development, the recognition of gestures poses another challenge. Hoste [67] and Rubine

[68] present research about defining and recognizing gestures in software. While Rubine’s

focus was on mouse input, Hoste expanded the concept to multi-touch interfaces. In dis-

cussing the rejection of unclear gestures, Rubine argues that “in applications without undo,

rejection is preferable to misclassification and should be enabled” [68]. Minksy was already

working on single-touch gestures in the 1980s to “introduce programming ideas to very

young children” [25].

Moscovich and Hughes [69] presented findings that indicate the following principles in

dual-finger manipulation in single-handed and double-handed gestures:

� “Unimanual multi-touch manipulation is compatible with a visual rotation task”;

� “Two handed multi-touch manipulation is only compatible with an object manipula-

tion task when there is a clear correspondence between the fingers and the manipu-

lated control points”;

� “Two hands perform better than one at tasks that require separate control of two

points”.

These concepts have been embraced by software designers of multi-touch devices, the most

recognizable features of smartphones being the pinch-to-zoom and dual-finger rotation

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 38

tasks. Furthermore, the aforementioned guidelines can help software designers in the choice

of controls and tasks assigned to those controls.

Kammer et al. distinguish online gestures from offline gestures: “offline gestures are

usually processed after the interaction is finished” [44].

Discussing video games, Wachs et al. identify gesture spotting (“distinguishing useful

gestures from unintentional movement” [70]) and a fast response as essential requirements

of such systems. Non-contact installations such as SoundCatcher [71] respect Wachs et

al.’s “come as you are” [70] requirement. Wachs et al. also mention a trade-off between the

number of gestures sensed by a system and the performance of its recognition algorithms.

3.1.5 Continuous Controls and Absolute Positioning

As opposed to computer keyboards, multi-touch devices offer the possibility of continuous

parameter control. An important difference between multi-touch and WIMP interaction is

also absolute positioning.

Continuous controls allow software designers to expose access to the finer details of

parameters that can then easily be adjusted. This type of interaction is clumsily performed

using a computer mouse, and computer keyboard keys only allow the user to navigate a

given range by increments.

Because they often combine the control and display surfaces, multi-touch devices might

need the user to focus his or her attention away from a potential audience. This can take

away some of the immersiveness of a musical performances, although a clever choice of

gestures5 might make interaction possible without looking at the table.

3.1.6 Innovative Controls

After considering the characteristics and issues of multi-touch technology, we focus on

innovative controls that are found in the literature. The common controls of basic WIMP

interaction, namely sliders, buttons, menus, knobs, XY graphs, and text fields, can be used

in multi-touch interaction, but more innovative controls also exist.

Following Jacob et al.’s hypothesis, we are of the opinion that “performance improves

when the perceptual structure of the task matches the control structure of the device” [72].

We hope to exploit this relation of task and device by evoking familiar control structures

5http://www.gergwerk.com/work/design/design01.html, accessed 2012/03/11

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 39

through a careful choice of user interface metaphor. The integrality or separability of

controls [72] can be exploited in multi-touch software, so as to sometimes combine or

separate different parameter changes.

General Controls

Pie menus and marking menus [73] are now familiar to most computer users. Stacked Half-

Pie Menus [4], an alternative to multi-level WIMP menus for touch tables, are meant for

navigating nested hierarchic data structures and are designed to minimize the time required

for choosing elements and the occlusion of menu items. They can support an unlimited

number of menu entries. An illustration is presented in Figure 3.1.

Fig. 3.1 Illustration of stacked half-pie menus [4] (courtesy of Tobias Hes-
selmann, Stefan Flöring, and Marwin Schmitt)

Geiger introduced the concept of border crossing, based on the action of plucking a

string: “an event gets triggered when the pointer on the touch screen crosses a border”

[74]. This control could be used on portable devices to provide page navigation in e-books:

dragging the finger beyond a certain position would cause the next page to be loaded.

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 40

Cuebert ’s [75] background research revealed a need for the automated movement of

controls. This type of programmed path can be more easily implemented in software than

in hardware. It could be an interesting high-level addition to the controls of a multi-

touch interface. Native Instruments Traktor 6 implements such a programmed path in

automatically moving the crossfader to its extremes in one mouse click.

The Pump gesture [27] was presented as a solution to the issue of occlusion that is

widespread in multi-touch interaction. It allows a cursor to be offset either below or above

the finger of the user, in a traditional WIMP environment. This control is useful in touch-

based interaction that still use a cursor, such as TeamViewer 7, a remote desktop application

for mobile devices. It is also implemented in Android 4.08, Google’s mobile operating

system, when choosing between different suggested spellings or similar words.

Pixel-Level Selection

Techniques for pixel-level selection include the Cross-Lever, Virtual Keys, Cross-Keys, 2D

Lever, and Precision-Handle [57], or Dual Finger Selections (Offset, Midpoint, Stretch,

X-Menu, and Slider) [5]. They are not necessarily required in all types of applications.

In many situations, user interfaces can be designed with large controls, and gestures for

zooming in can make it unnecessary to perform pixel-level selection. In situations where

traditional operating systems have to be used or large data sets have to be explored, these

selection methods do, however, provide a way of overcoming the difficulties of selecting

small targets with a human finger.

Clicking

Simpress [5] is a method for emulating real pressure-sensitive buttons based on the area

covered by the fingers. It is shown in Figure 3.2.

The Fluid DTMouse [76] is a multi-touch implementation of a regular WIMP mouse

that avoids occlusion and handles issues such as distinguishing dragging from mouse-over

motion.

6http://www.native-instruments.com/#/en/products/?category=1316, accessed 2011/07/20
7http://www.teamviewer.com/en/download/mobile.aspx, accessed 2012/03/18
8http://www.android.com/about/ice-cream-sandwich, accessed 2012/08/02

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 41

Fig. 3.2 Illustration of the SimPress technique, with accompanying explana-
tion [5] (courtesy of Hrvoje Benko, Andrew D. Wilson, and Patrick Baudisch)

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 42

Zooming In and Out

Zliding [77] is a method for using pressure-sensitive controllers so as to zoom in and out

of areas. It was presented in the context of audio and video editing. Ramos and Balakr-

ishnan also introduced the Zliding Wheel, a knob control that allows users to “control the

granularity of the wheel’s increments” [77].

DTLens [78] is a multi-user environment designed for the visualization of high-resolution

geospatial data. As such, it provides the possibility of locking a region and invoking back

a previously-zoomed area.

Rub-pointing [79] is a method for zooming in and out of a touch screen and selecting

small targets; it uses a diagonal rubbing motion and the take-off selection strategy.

3.2 A Review of Musical Applications on (Multi-)Touch Systems

3.2.1 Music Exploration

In designing Audioscapes, “a framework for prototyping and exploring how touch-based and

gestural controllers can be used with state-of-the-art content and context-aware visualiza-

tions.” [80], the usefulness of touch systems was presented in the field of Music Information

Retrieval. Self-Organizing Maps (SOMs) were used to visualize large music libraries on

different interfaces. The authors of Audioscapes do not discuss the use of multi-touch in-

teraction, but we can easily imagine the use of the dual-finger pinch-to-zoom gesture to

navigate large collections of music.

Torrens et al. [81] discussed different visualization techniques for large music libraries.

A disc-like visualization system supporting playlist management was introduced. The other

techniques are rectangle visualization (a single table with two metadata fields as axes) and

tree-map visualization (similar to SOMs). One of the findings of the researchers is that

tree-map visualizations are not well suited for displaying information about tracks and

playlists. The use of a cursor and scroll bar indicate the focus of the authors on data

visualization and not on user interaction, as multi-touch possibilities are not discussed by

Torrens et al.

Researchers at the University of Victoria [82] developed an application on the Diamond-

Touch [26] hardware for the collaborative browsing of a music library organized by a SOM.

SOMs are a data visualization technique that appears often in Music Information Retrieval

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 43

literature when large metadata datasets need to be explored. DiamondTouch allows for

multi-touch, multi-user interaction.

3.2.2 Music Control, Sequencing, Score Editing

Frießet al.’s Collaborative Multi-touch Sequencer 9 was a multi-touch sequencer using con-

centric rings. The Stereotronic Multi-Synth Orchestra10 also used a user interface with

concentric rings to implement a sequencer, which supported multi-touch interaction.

Crevoisier and Kellum designed a multi-touch LLP system [47] to control different

virtual objects such as buttons, sliders, and XY graphs. These controls are common in

sequencers, but no clear description of their audio environment is described.

Roots [83] was a multi-touch sequencer for the Bricktable [35] system that displayed

expanding vines that were then “actively triggering sounds or loops associated with in-

visible zones on the screen” [35]. A combination of tangible objects and finger interaction

allowed the user to control the playback of sound buffers in three modes: “either completely

generative, semi-generatively, and/or fully controlled” [35]. The choice of an organic and

generative element in the user interface was combined with the presence of several knobs

that allowed the music playback parameters to be modified in real-time; this explicit ac-

cess to parameters would have been much more difficult in the aesthetically rich generative

environment.

Laney et al. [84] discussed a multi-touch, collaborative multi-user music control system

in an analysis of the issues related to collaborative music production. The prototype

shown allowed four users to control the playback of musical phrases on a tabletop interface,

each having his or her instrument (bass, drum, keyboard, percussion). Beyond choosing

an individual loop, the users do not seem to be able to influence other parameters of

the sequencing or audio effects, as the focus of the authors was on collaborative musical

performance within a creative process.

Scrapple [85] was a spectrographic sequencer based on an additive synthesizer. In it,

the length of a long sewing table represents the time axis, while its width represents the

frequency axis. Pieces of fabric of different sizes were placed on the sewing table to trigger

notes of different lengths, as in a regular sequencer. Instead of tracking fingers, Scrapple

9http://www.dfki.de/its2010/papers/video/de131.wmv, accessed 2010/12/07
10http://vimeo.com/6859653, accessed 2010/12/07

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 44

generated a soundtrack based on the fabric markers placed on the table. It was therefore

multi-touch in the sense that different fingers could affect the system concurrently.

Cuebert [75] was a multi-touch mixing board for sound engineers in theatres. At the

core of its design was the replacement of several knobs by a touch screen, while leaving

the general architecture of the console the same, due to the need for an instantaneous

visual evaluation of the board’s state by the user. We expect that, if the software interface

of Cuebert is to maintain the look of a mixing board, the lack of tactile feedback may

be a hindrance to adoption by technicians, because of the difference in fine control when

displacing heavy mechanical knobs through noticeable friction (as is the case with most

mixing desk sliders) and virtual objects with minimal friction. We agree with the authors’

view that their interface promises added value in terms of automated motion and the

“flexible communication of dynamic and context-sensitive content” [75].

WallBalls [86] enabled the playback of elements from a sample bank in an environment

made of balls and walls. Although this environment does not implement friction and gravity,

it allows loops and random trajectories. Not exactly a touch system, WallBalls uses an

electromagnetic motion tracker with four styli in its interaction. The system is therefore

multi-user and single-touch.

3.2.3 Music Synthesis

O’Sullivan and Boland [87] presented a functional analysis of multi-touch systems from the

perspective of musical applications. Their research provides a good overview of multi-touch

technology, but we are more interested in their discussion of sound symbolism for visual

feedback during sound synthesis. In their environment, a round shape produces a “sine-type

tone” [87], while a shape with pointy edges produces a sound with more harmonics.

The reacTable is an “electro-acoustic music instrument with a tabletop tangible user

interface” [9], meant to be used by different collaborators. Running at 60 FPS and 640x480

pixels, the system provides rich visual feedback to the user. The list of possible objects

on the table is: generators, audio filters, controllers, mixers, and clock synchronizers. An

important feature of the reacTable is that this multi-touch device combines the tasks of

editing a piece and playing it.

Sasaki et al.’s pressure-sensitive single-touch tablet [12] was used to control an FM

synthesis system. Luthier [1], an instrument building application for the Rolky, allowed

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 45

the synthesis of musical contents on a multi-touch device with visual feedback a few years

later.

Davidson and Han presented a multi-touch sound synthesis engine with an emphasis on

the “richly dynamic context” [88] of the graphical display. The authors argue that tangible

systems “face challenges as the complexity of the environment increases” [88], and instead

choose to offer the same behaviour using virtual puck-like GUI widgets. In the paper, the

authors indicate an interest for the use of gestures using one or two hands for the control

of physical models of musical instruments.

Cicconet et al. [89] used an augmented multi-touch system (a tabletop instrument with

mounted guitar strings) to allow music improvisation on the blues scale. In addition to

playing notes on an interface resembling a guitar neck, the polyphonic system provides

access to note bending and a similar interaction mode, vibrato. Moog’s [14] keyboard-like

controller with five degrees of freedom (see Section 1.1.3) is another instrument meant for

electronic music synthesis. Never commercialized, it was later presented at NIME 2005

[15] by Eaton and Moog. In the 1950s, Le Caine developed the Electronic Sackbut [90], an

electronics-based synthesizer that supported mutiple-finger input.

SurfaceMusic [91] implements three types of instruments: percussive, string, and wind.

It uses OSC and ChucK, and also recognizes gestures. We praise Fyfe et al’s work for

investigating non-traditional representations of instruments (all three appear as discs, with

differences between instruments), and for the use of parameters derived from simple inter-

action: in the string instrument, “the angle of the strum gesture maps to pluck position

and the speed of the strum maps to attack velocity in the physical model” [91]. Kuhara and

Kobayashi [92] present an oscillator-based synthesizer that uses the kinetic information of

a collision-enabled environment of virtual particles. Several attributes of the particles are

used in the sound: linear velocity, angular velocity, shape, and collisions. The high-level

control of a particle system results in an environment that does not require constant active

participation from its user, a feature that is useful for ludic systems, as illustrated by the

reported popularity of Kuhara and Kobayashi’s mobile device application with children.

3.2.4 Music Editing

Roma and Xambó’s waveform editor [93] was a tangible system used both to modify wave-

forms and for live music performance. The authors described their system as implementing

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 46

the metaphor of a toolkit, wherein physical pucks are tools. Instead of presenting the

palette of tools in an elongated array (as in standard image editing software), the palette

was represented by the tangible objects, much in the way the reacTable presents the user

with a tangible toolkit surrounding the physical device. This waveform editor also sup-

ported gestures: dual-finger zooming and single-finger scrolling.

3.3 Summary

In the first part of this chapter, we considered the software implications of working with

multi-touch hardware. We saw that computer vision libraries allow multi-touch input to

come from specialized applications (e.g., Community Core Vision), and that specific li-

braries can then be used to interpret the touch events in our software. The software

designer should consider different selection strategies, the possibilities of continuous con-

trols, and the support of gestures when designing his or her software. We also described

a few innovative GUI controls that go beyond traditional WIMP interaction and will be

considered in the software design of our DJing environment.

The second part of the chapter provided a literature review of musical applications

for single-touch and multi-touch technology. We identified software that allows different

musical tasks to be performed: music exploration, music control (as well as sequencers

and score editors), music synthesis, and music editing. Although we focused on academic

examples of multi-touch software, we point out the fact that software distribution platforms

for mobile devices, such as the App Store (for Apple devices) or Google Play (for Android

devices) contain various music-based applications. They are of various levels of control and

complexity, and it should be noted that some software from expensive pieces of hardware

has even been ported to those platforms (e.g., reacTable mobile11 and Liine12).

Many of the commercial mobile device and tablet applications mimic a traditional DJing

interface. This is the case of djay13, for the iOS operating system, and DJ Studio 4 14 for

Android, two popular apps for touch-enabled mobile devices. This type of software has the

merit of bridging the knowledge gap between DJs and music lovers by providing affordable

11http://www.reactable.com/products/mobile/, accessed 2012/03/11
12http://liine.net/en/products/lemur/, accessed 2012/03/11
13http://www.algoriddim.com/djay-ipad/, accessed 2012/12/10
14https://play.google.com/store/apps/details?id=com.beatronik.djstudiodemo&hl=en/, accessed

2012/12/10

3 Multi-Touch Systems: Software Choices and a Review of Musical
Applications 47

access to similar tools as those used by professional DJs. An app such as Skillz 15 goes even

further in teaching music lovers about traditional DJing by leading them through DJ sets

in a gaming context. However, our view is that there is more research and entertainment

value in using DJing tools to facilitate music creation than in allowing users to perform the

baby scratch on a touch tablet. The approach taken by MixxMuse DJ 16, an application

that lets users sequence samples in a controlled, on-pitch and on-beat environment, is more

in line with our idea of a ludic software application for DJ-like music creation.

The next chapter reviews the concept of metaphor and discusses conceptual integration

(or blending) in the context of software design.

15https://itunes.apple.com/us/app/skillz-for-ipad/id456617069?mt=8/, accessed 2012/12/10
16https://itunes.apple.com/us/app/mixxmuse-dj-pro-hd/id373544145?mt=8/, accessed 2012/12/10

48

Chapter 4

Metaphors, Blending, and Software

Design

This chapter reviews the concepts of metaphor and blending (or conceptual integration),

and highlights the use of these concepts in multi-touch software systems for musical ex-

pression.

4.1 Image Schemata, Metaphors, and Blends

4.1.1 The Traditional View of Metaphor

Lakoff introduced the traditional view of metaphor with the following sentence: “The word

“metaphor” was defined as a novel or poetic linguistic expression where one or more words

for a concept are used outside their normal conventional meaning to express a “similar”

concept.” [94] In this traditional view, metaphors are based on similarity, and are purely

a matter of grammar, syntax, and figures of speech. These fallacies had previously been

exposed by Lakoff and Johnson [95], cognitive scientists and philosophers.

4.1.2 The Contemporary View of Metaphor

In their 1980 book [95], Lakoff and Johnson argues that metaphor is much more than

a poetic tool. For them, it pervades everyday thought, and shapes the way we think,

as this concept is rooted in our experience, both cultural and physical. Example such

as Time is money and Happy is up respectively illustrate the cultural and physical

4 Metaphors, Blending, and Software Design 49

origins of such metaphors. The authors distinguish conceptual metaphor from linguistic

metaphor, the latter corresponding to the litterary use of the concept. Zbikowski discussed

the elements involved in a metaphor: conceptual domain, image schema, and repeated

patterns of embodied experience [96]. Lakoff’s invariance principle determines that the

transferred properties of the source domain retain as much of their initial characteristics

as is allowed by the target domain.

Lakoff and Johnson argued that metaphors highlight certain aspects of the comparison

while hiding others: parts of the metaphor are left “unused”. They also discussed consis-

tence and coherence between different metaphors that describe the same concept: “The

two metaphors would be consistent if there were a way to completely satisfy both purposes

with one clearly delineated concept. Instead, what we get is coherence, where there is a

partial satisfaction of both purposes.” [95] This distinction explains how it is possible to

use different metaphors for the same concept.

Metaphors result in inferences: they are concepts derived from the choice of metaphor.

For example, inferences for the metaphor Time is money are that time can be wasted or

exchanged like any commodity. Inferences are also known as entailments [97].

Lakoff and Johnson present different types of metaphors that we list below:

� Structural metaphors (e.g., Argument is war) are used to structure one concept

in terms of another one;

� Orientational metaphors (e.g., Happy is up) are rooted in physical and cultural

experience. They use simple spatial concepts such as down or up;

� Ontological metaphors (e.g., The mind is a machine) are “ways of viewing events,

activities, emotions, ideas, etc., as entities and substances”;

� Personnification metaphors (e.g., A country is a person) relate concepts to human

beings;

� Dead metaphors are marginal metaphors that appear in certain expressions (e.g., a

head of cabbage, the foot of the mountain) but use only one aspect of the metaphor.

Possibly derived from metaphors (or personnifications) prevalent in previous times,

they now only survive through isolated idioms.

4 Metaphors, Blending, and Software Design 50

In the 2003 appendix to their book, Lakoff and Johnson argued that the lines between

these different types of metaphors are blurry, and that in fact most metaphors belong to

several such categories, and all are structural and ontological. This appendix also provides

an extensive definition of conceptual metaphor: “In a metaphor, there are two domains:

the target domain, which is constituted by the immediate subject matter, and the source

domain, in which important metaphorical reasoning takes place and that provides the source

concepts used in that reasoning. Metaphorical language has literal meaning in the source

domain. In addition, a metaphoric mapping is multiple, that is, two or more elements

are mapped to two or more other elements. Image-schema structure is preserved in the

mapping — interiors of containers map to interiors, exteriors map to exteriors; sources of

motion to sources, goals to goals, and so on.”

4.1.3 Blending, or Conceptual Integration

Fauconnier and Turner [98] introduced blending, or “conceptual integration”, as another

way to combine seemingly unrelated concepts. While metaphor maps one conceptual do-

main to another, blending incites us to build an extra mental space, as well as an abstract

space, that are combinations of both input domains. Blends are not always based on

metaphor, but metaphors are a type of blend.

The four components of a blend are illustrated below (the example is ours):

� Two input spaces: they are mental spaces, each containing elements of different

kinds (e.g., weather, people, concepts), and are structured by frames (prototypical

situations). As an example, take mental space one: “the Canadian winter”, yourself,

and the frame “shoveling the car in the morning”. Take mental space two as: “a

Caribbean beach”, an idealized (younger, fitter) you, and the mental frame of “a

morning swim”;

� Cross-space mappings: they are connections between counterpart in the input spaces.

In our example, “the Canadian winter” is mapped to “a Caribbean beach”, you are

mapped to the idealized version of yourself, and “shoveling the car in the morning”

is related to “a morning swim”;

� A generic space: the space of shared elements and core links between the elements

indentified by the cross-space mappings. This space would include extreme weather,

4 Metaphors, Blending, and Software Design 51

granular elements (sand and snow) in the environment, and a morning ritual;

� The blend: a new mental space that has elements of both input spaces (and their

mappings), plus new emergent structures taken from either input space but not shared

between the two input spaces. In our example, the following inferences are possible

in the blended space: shoveling sand from your Canadian driveway, getting a cold

because of a freezing sandstorm, and melting sand in winter.

Blends can be single-scope or double-scope networks. In single-scope networks, the

frame of only one of the input spaces is that of the blend, while in double-scope networks,

the blend’s frame is a combination of the frames in both input spaces.

The advantage of using blending over metaphor is the emergence of novel structures

of thought (such as freezing sandstorms or melting sand in the preceding example). We

intend to use this strength in the software design of our musical environment.

4.1.4 User Interface Metaphor and Blending for Software

User interface metaphor is the inclusion of graphical elements from a known domain in the

user interface of some software. Such metaphors can exploit many aspects of the input

space (e.g., operating systems using the office desktop metaphor include waste bins, folders

containing documents, and a clock).

Alty et al. [99] presented a methodology for using metaphor in computer systems de-

sign and evaluating the effectiveness of such metaphors. Their analysis of metaphor was

supported by set theory, a mathematical tool that enables the designers to quantify fea-

tures that lie outside the intersection of both sets, in order to limit invalid inferences. The

authors discuss the influence of “conceptual baggage”, namely the inferences of the source

domain that are left unused in the implementation of the metaphor.

The method proposed by Alty et al. to design computer systems using metaphor consists

of six steps:

1. Identifying system functionality;

2. Generating and describing potential metaphors;

3. Analyzing metaphor-system pairings using set theory;

4. Implementation and analysis of representation, realism, and consistency;

4 Metaphors, Blending, and Software Design 52

5. Evaluation of the use of metaphor;

6. Feedback on design.

Imaz and Benyon [100] highlight several metaphors that are common in interaction with

computers:

� Data is stored in “files” and “folders”: Archived digital information is a paper

document;

� Programs are written in a “language”: Machine code is a natural language;

� Programs are “executed” on a computer: Computers are cognitive beings, in

that they can execute tasks;

� We “cut” and “paste” text: Digital text manipulation is collage art.

Imaz and Benyon mention the fact that the use of metaphor in the design of digital media

is both praised for simplifying tasks (the desktop metaphor provides a more convenient way

of accessing files than a command line does) and criticized (because emergent functions can

be misleading, such as the dragging of a floppy disk onto a garbage bin to physically eject

the floppy disk in early versions of Mac OS) [100].

Illustrating Lakoff and Johnson’s view that metaphor both reflects and influences our

way of thinking, Imaz and Benyon explain the transition from procedural languages to

object-oriented languages as a shift from Software is a sequence of steps to Soft-

ware is a collection of objects.

In the presentation of their concept “The tangible memories box”, Hurtienne and Israel

[43] explain their choices in terms of metaphors as well as image schemas. This method is

used to justify design choices and highlight inferences.

Imaz and Benyon’s book introduced a method for applying conceptual integration, or

blending, to the task of designing software:

1. Understanding which input spaces and frames are involved (traditional software de-

sign analysis);

2. A lower level of abstraction: refine the concepts, take into account the constraints of

technologies (design of the GUI and perceptual features, possible actions). It is an

iterative process through various levels of abstraction.

4 Metaphors, Blending, and Software Design 53

4.2 Metaphor and Design

Saffer [101] argues that metaphor can be used in different ways in the design process: to

redefine problems, as a research tool for unfamiliar areas, as inspiration during brainstorm-

ing, as a communication device (a common ground for everyone involved in a project), or

applied to the design process itself (to compare it to another task).

Metaphor can be identified at different levels of an instrument: the MetaMuse [102]

was initially said to use “the metaphor of rainfall to make the process of granular synthesis

understandable”, but the authors then identified three more refined metaphors (pouring,

falling on a sink, and a virtual landscape).

Fels et al. [103] presented metaphor as a method of increasing the expressiveness of an

instrument, placing it in a more expressive region of their graph of audience and player

transparency axes by facilitating the understanding of the instrument by the user and

audience. Fels et al.’s objective was to “facilitate the acceptance of novel controllers into

the literature to allow for new forms of expression” [103]. Interestingly, the authors’ Glove-

TalkII system puts the performer in charge of choosing the metaphor, by training neural

networks based on the user’s movements.

Duignan et al. [104] analyzed two popular music production applications, Reason and

Live, to identify and compare metaphors that appear in the applications. The authors

highlighted the fact that the metaphors upon which these interfaces were designed might

not be very meaningful to new users, given the fact that more and more of them have no

experience of studio hardware, but might have interest and talent in music production.

We strongly agree with this latter point, and justify our focus on conceptual blending and

metaphor by hoping to simplify the learning process of a music production environment

through the use of uncommon metaphors.

In their presentation of the A20, Bau et al. [105] explored three metaphors in the design

of their interface: instrument building, composition, and expressivity of interpretation. The

A20 was “a polyhedron-shaped, multi-channel audio device that allows direct manipulation

of media content through touch and movement, with various forms of aural and haptic

feedback.” It was a prototype meant to test out design ideas for interaction with a tangible

audio device. Fishkin, while developing a bidimensional taxonomy for tangible interfaces

[20], used the axes of embodiment and metaphor. The metaphor axis consists of the three

combinations of “metaphor of noun” (related to the shape of the tangible object) and

4 Metaphors, Blending, and Software Design 54

“metaphor of verb” (related to the motion of the tangible object) plus the absence of

metaphor and the full use of a metaphor.

Wessel and Wright [106] discussed several metaphors that served as inspiration for their

controller software: drag and drop, scrubbing, and dipping, although their work focuses

more on a two-handed digitizing tablet than on multi-touch interfaces for fingers. We

argue that these actions do not represent metaphor as we have presented them here, but

are instead gestures.

Dahl and Wang [107] introduced SoundBounce, a piece for CCRMA’s Mobile Phone

Orchestra, based on the metaphor Sound is a ball that can be thrown and passed

around. Critical of their work, the authors argue that their simplistic choice of metaphor

risks restricting the “active interpretation and multiplicity of understanding that good art

allows” [107]. We praise this choice of metaphor for emphasizing the collaborative aspect

of music performance, but insist on the fact that the source domain (a ball) is too poor to

yield interesting inferences. Perhaps refining it (such as Sound is a baseball or Sound

is a stress relief ball) could generate richer inferences, by drawing upon schemas

such as a sports game or bestowing a particular texture, weight, dimension, and possibly

purpose (we anticipate users to quickly get bored of pointlessly passing a ball around) to

the target domain.

4.3 Interface Metaphors in Touch-Enabled Musical Software

In this section, we mention musical applications with multi-touch interactionns, and briefly

describe the frame being invoked by the (implicit or explicit) use of metaphor in user

interface design. Our purpose is to show the variety of domains from which one can draw

inspiration when consciously designing software with metaphor.

Installations using interface metaphors inspired from the natural world include Small-

fish1 (an image-based chamber music generator), Zen Waves2 (a zen garden), and Froggies3

(a frog pond). The Roots4 application implemented a sequencer using a vine-like structure

in the GUI, on a system supporting fiducials [83].

1http://hosting.zkm.de/wmuench/small fish, accessed 2010/11/10
2http://www.youtube.com/watch?v= H4WnZ5D LQ, accessed 2010/11/10
3http://www.jtnimoy.net/itp/froggies/, accessed 2010/11/10
4http://www.youtube.com/watch?v=v9Yt5vUD2Xc, accessed 2010/11/17

4 Metaphors, Blending, and Software Design 55

The SoundRose installation [3] used the metaphor of roses on its display surface, and

used the blob information to control various parameters of a sound synthesis engine.

ANTracks [108] used the metaphor of ants moving on a hexagonal grid to interact with

a pitch pattern. Here, the passing of time was represented by the motion of ants on a

grid instead of just being a playhead on a timeline, as is the case in most sequencers.

The Scrapple project [85] used the metaphor of a sewing desk to perform spectrographic

sequencing in an augmented reality environment. Instead of rethinking the passing of time,

this project emphasized the laying out of sounds on the timeline. Being actual pieces of

fabric, these sounds have different shapes and sizes. An unused aspect of the metaphor

is the texture of fabric. Understandably, this feature is delicate to extract using cameras,

but could be replaced by fiducial patterns on different pieces of fabric. The Stereotronic

Multi-Synth Orchestra5 used a metaphor of concentric rings to implement a sequencer.

Multi-touch environments using metaphors that are not related to the natural world

include Composition on the Table6 (spinning disks, an electronic circuit with switches, and

sliding plates) and the MUSICtable [109] (geographic map). Another project involving

geographic maps is Weather Report [35], in which the temperature of regions in the USA

affected the timbre of sounds.

In the 1980s, Johnstone [1] introduced the metaphor of a storeroom for his Rolky instal-

lation: materials, tools, and operational devices are stored and invoked on the controller.

Similarly, Nakatani and Rohrlich [21] present a metaphor for the design of software inter-

faces for “soft machines” (software with evolving GUI, as opposed to hardware) such as

touch tables, based on a three-level structure:

� Tool bin: “the entire collection of tools available on a particular computer”;

� Workshop: “a work environment specialized for a particular type of work or task

[...]”;

� Workbench: “analogous to a work surface or counter in the workshop where the

actual work is done. On the workbench are tools needed just for the current task”.

Similarly, the choices of Johnstone on one part, and Nakatani and Rohrlich on the

other, are much akin to the choice of the desktop metaphor in operating systems. Instead

5http://vimeo.com/6859653, accessed 2010/12/07
6http://www.ntticc.or.jp/Archive/1999/+-/Works/conposition e.html, accessed 2010/11/10

4 Metaphors, Blending, and Software Design 56

of focusing on a traditional shirt-and-tie or artistic office setting (file folders, recycling bins,

collages), these user interfaces emulate environments more familiar to blue-collar workers

or anyone who has ever done some kind of renovation work. We see this distinction as

a powerful tool in catering to different segments of the global population. Beyond the

fact that multi-touch technology has not reached (and will likely not reach) all remote

populations who are unfamiliar with these settings, we think that our choice of user interface

metaphor should be as intuitive as possible to all segments of population, particularly given

that one of our objectives is the design of a ludic environment.

Wessel and Wright [106] presented various metaphors for use on their custom multi-

touch hardware. These include mapping coordinates to 2D spaces, dipping (changing the

dynamics of a sound), navigating the 2D space of a group of oscillators, granual synthesis,

crossfading between four sound sources, and resonant filters.

Wessel et al.’s array of force-sensitive controllers [24] used the metaphor of a brick wall,

but only in its aesthetic look. The metaphor of a painter’s palette was used to provide users

of the WallBalls system [86] access to the different tools and samples available. The palette

metaphor is also employed in Roma and Xambó’s waveform editor for live performance [93].

This metaphor is widespread in modern image editing software, where colours and other

tools are laid out to the side of a canvas.

Wessel et al.’s [83] AhText! installation used a mandala metaphor, while the Maps

application represented data in the style of a mosaic.

Bragdon et al. used three metaphors “to motivate gesture learning through positive

reinforcement” [110] in a puzzle environment: buttons, springs, and physical props (such

as a car wheel). The authors’ motivation was to teach novice users a set of gestures. We

praise the use of interface metaphors to facilitate the learning of a software environment.

Cicconet et al. [89] used the metaphor of a guitar neck to allow improvisation on the

blues scale. A system presented by Malik et al. [111] allowed the multi-user control of a

large wall display by manipulating the desktop metaphor with multi-touch gestures.

4.4 Summary

We have approached the concept of metaphor from the traditional poetic viewpoint, be-

fore showing through Lakoff and Turner’s work that this concept is ubiquitous in human

thought. A more recent development is the appearance of conceptual integration, or blend-

4 Metaphors, Blending, and Software Design 57

ing, which provides a structure for innovative concepts to emerge out links between concep-

tual spaces (metaphor being such a link). Having presented software engineering research

in blending, we analyzed some multi-touch musical software environments with this new-

found knowledge. This allowed us to document and qualify the used and unused parts of

metaphors and blends.

We will now focus on using these concepts in designing our own multi-touch musical

software environment. Alty et al. and Imaz and Benyon recommend different approaches

for designing software with blends and metaphors. Instead of following these approaches

literally, we will perform a more informal type of software design, informed by the strengths

of conceptual integration and metaphor.

58

Chapter 5

TactoSonix: Software Design

This chapter presents the software design of TactoSonix, beginning by high-level consid-

erations before presenting our design choices. Our software design methodology combines

conceptual integration and elements of traditional software design.

5.1 Design Spaces as Informal Functional Design

One must choose where in the seemingly endless design spaces of interfaces the system

will be placed. We shall discuss several such spaces: empirical classification, contexts, and

Rowe’s rough classification [112]. These considerations will give us high-level answers to

questions that are frequently discussed in the functional design of software, and allow us

to make design choices focused on our objective of providing an accessible platform for the

creation of music based on tools with which the general public might not be familiar.

5.1.1 Empirical Classification

Drummond’s [113] empirical classification builds upon Bongers’ [114] and includes:

� Performer with system;

� Audience with system;

� Performer with system and audience;

� Multiple performers with a single system;

5 TactoSonix: Software Design 59

� Multiple systems interacting with each other and/or multiple performers.

Our system will be of the first type, a performer with the system, although the multi-

touch platform will make it possible for multiple performers to interact with the software.

As our immediate motivation is not to implement a professional solution for performance

in front of audiences, we do not see a need to consider the second, third, or fourth types of

system. We would nonetheless like to point the reader towards a system that implements

those types of interaction: Turntable.fm1 allows users to perform DJ sets for virtual rooms

of real listeners. The fifth type of interaction in this classification could be of interest in

further iterations of our software, in that we can imagine the possibility of a networked

music creation environment in which users could, for instance, use as their own loops the

audio output of other users’ mixes.

5.1.2 Contexts in Interactive Computer Music

An important question that comes to mind when creating a musical application is what

kind of sound control will be offered to the user. This software-related (in our case) choice

has implications on the set of sounds or tones available, as well as on the design of the

user interface. Wanderley and Orio [115] present a list of contexts in interactive computer

music, including:

� Note-level control;

� Score-level control;

� Sound processing control;

� Traditional HCI controls: higher-level sound control (e.g., controlling a bank of oscil-

lators or navigating a timbre space) via metaphor;

� Interaction in multimedia installations: when sound is part of a larger experience.

Unless we impose tonal restrictions, note-level control implies a minimum level of music

theory knowledge from the user, which goes against our main motivation. We intend to

provide both score-level control (as a sequencer does) and sound processing control (through

audio effects) to users of our system. Although we will make use of metaphor, our software

1http://turntable.fm/, accessed 2012/12/10

5 TactoSonix: Software Design 60

will not fit the fourth context because of the conceptual complexity of such music technology

systems to novices. Sound will be the main component of our system, therefore the fifth

context does not apply to our application.

5.1.3 Rowe’s Rough Classification

Rowe’s rough classification [112] of interactive systems uses a combination of three dimen-

sions:

� Score-driven vs performance-driven: whether or not the system follows “predeter-

mined event collections, or stored music fragments” [112];

� Transformative vs generative vs sequenced: does the system create variants of exist-

ing material, synthesise audio from basic sets (scales, duration sets), or control the

sequencing of prerecorded contents?;

� Instrument vs player paradigms: is the system designed as an extension of the per-

former, or as a virtual player?

The system we foresee will be performance-driven (in that loops will be loaded from a

library), sequenced (the audio loops are prerecorded), and will focus on the player paradigm

(we are developing a software system to be run on hardware with the form system of a

coffee table or desk, and possibly on tablets).

5.2 Nonfunctional Design

We now explore features that are not immediately related to the behaviour of the system,

but that affect its operation nonetheless.

5.2.1 Multi-user

Multi-user systems include the reacTable [9] and DTLens [78]. These systems do not

recognize different users, as is possible with DiamondTouch [26], but are rather designed

for concurrent visualization and interaction by different people.

The concept of private space [116] for voting purposes or the visualization of personal

data has also been explored by some researchers in collaborative environments.

5 TactoSonix: Software Design 61

Our system will not be designed for multiple users, but the use of tabletop-sized FTIR

and RDI multi-touch technology means that in practice, several users will be able to interact

with the system.

5.2.2 Latency and Frame Rate

Depending on the type of interaction required, stricter requirements on the latency of a

controller will be imposed. An accepted lower limit for percussive instruments is 10 ms

[87][106], meaning 100 FPS.

Our system will focus on the higher-level control of recorded musical contents, not on

note-level control, for all tracks. As such, we do not anticipate the need to aim for the

aforementioned lower limit on latency. The typical frame rates of contemporary cameras,

namely 30 fps to 60 fps, should be more than enough for our application.

5.2.3 Discrete vs Continuous Controls

Wessel and Wright [106] highlight a need for the continuous control of parameters, and

present their Open Sound Control (OSC) protocol as an improvement over MIDI in that

it offers the synchronized transmission of events as well as a mechanism for atomic up-

dates. It is worth noting that their focus is on “improvised interactive live performance, in

collaboration with improvising acoustic musicians” [117].

We understand the dullness of event-based musical systems and stress the importance

of continuous controls in our software.

5.3 Designing with Blends

In this section, we present two metaphors for a user interface dedicated to DJing. Lakoff

identified metaphor in fields as varied as mythology and foreign policy [94]. We use his

approach in the field of music, more specifically in the task of controlling the playback of

recorded audio samples.

5.3.1 Design Choices

In order to provide a ludic platform for the high-level control of pre-recorded music, we

decide to facilitate certain tasks so that the user can focus on more creative aspects of

5 TactoSonix: Software Design 62

DJing. For instance, all tracks will have their beats matched, and loops will always be

properly synced. The sound library will be predefined and not customizable by the user,

which will ensure that all loops are of the same time signature and tempo. Additionally,

crossfading will be automated.

5.3.2 Metaphor One: Making music is cooking

The first metaphor we study is Making music is cooking. We illustrate the link between

DJing and cooking2,3 by pointing at DJ/hip-hop terms such as “blend”, “mix”, “fresh”,

and “cut”.

The user will be presented with a symbol representing a burner or cooking pot, in which

elements will be added. Table 5.1 details our choice of inferences for this metaphor, while

table 5.2 explains how the features of DJ equipement are implemented.

Inference Implementation details
Combining elements creates a coherent whole As with cooking, different ele-

ments are necessary to create a
good result. In this case, loops
are split in three categories: per-
cussions, bass, and lead instru-
ment.

Hotter means louder The proximity of loops to the cen-
tre of their burner will determine
the amplitude of the sound.

Different pots have different elements While cooking, people naturally
cook different meals in different
pots. For us, these pots will rep-
resent individual channels of mu-
sic.

Table 5.1 An explanation of the Making music is cooking metaphor

2http://www.omelette.net.au/release/gourmet scavenger, accessed 2011/02/20
3http://www.allmusic.com/album/pass-the-peas-the-best-of-the-jbs-r486032, accessed 2011/02/20

5 TactoSonix: Software Design 63

Feature Availability Implementation details
Channels and tracks X Each burner will represent a channel of

audio, and each cookable element will
be a track on these channels.

Crossfading X Crossfading will be automatic when
moving towards other burners.

Cues 7 Not implemented.
Volume X The closer a cookable element will be

to the centre of the pot, the louder it
will be.

Bass, mid, and high filters X A lowpass filter will be provided by the
position of a cookable element within
the pot.

Audio effects 7 Not implemented.
Pitch shifter 7 Not implemented.

Tempo shifter 7 Not implemented.
Song syncing X All tracks will be in sync.

Looping X A section of each pot will be split in
four to provide looping of four lengths:
one, two, four, or eight beats.

Sequencing X By adding and removing elements from
the pot, the user will change the se-
quencing of the tracks.

Table 5.2 The implementation of DJ equipment features in the cooking
metaphor. See Section 1.1 for an explanation of these features.

5 TactoSonix: Software Design 64

5.3.3 Metaphor Two: Making music is gambling

In this metaphor, the user is responding to cues from non-human players, as his or her role

is that of a croupier watching over a group of gamblers. Random elements, in the form of

card draws, will impact the sound. The user will not be performing croupier tasks literally,

since he or she will be able to perform tasks such as modifying the amount bet by gamblers.

Table 5.3 details this metaphor, while table 5.4 explains how each DJ equipement feature

could be implemented. Note that only metaphor one is actually implemented in this thesis.

Inference Implementation details
Randomness Any gambling task involves some kind of ran-

domness. The choice of track that will be
assigned to gamblers will be random.

The volume is the bet amount Increasing and decreasing the amount that
is bet changes the volume. We justify this
choice by the fact that more money in jeop-
ardy means more expectations, energy, or
stress.

Gamblers are adressed in sequen-
tial order

Much like a croupier has to interact with
gamblers one at a time, the DJ could be
forced to address the audio channels one at
a time.

Table 5.3 An explanation of the Making music is gambling metaphor.
See 1.1.

5.4 Implementation

We now present our implementation of the first metaphor presented, Making music is

cooking. It is the result of our reflexion about metaphor-based user interface, and also

uses innovative GUI elements. We call our multi-touch DJing software TactoSonix, in

expectation of the development of new metaphors using the same framework.

5.4.1 Metaphor and User Interface

Table 5.2 documents our implementation of certain DJ tools within the Making music is

cooking metaphor.

5 TactoSonix: Software Design 65

Feature Availability Possible implementation details
Channels and tracks X Different gamblers would represent dif-

ferent audio tracks, and different tables
of gamblers will represent audio chan-
nels.

Crossfading X Crossfading would be controlled by the
speed at which the croupier moves from
one table to the next.

Cues X Could be implemented by making the
joker card appear.

Volume X By adjusting the amount bet by players
(including the croupier), the user will
be able to change the volume of each
track.

Bass, mid, and high filters X By cheating on a gambler, the croupier
could apply these filters to the match-
ing track.

Audio effects X The Jack, Queen, King and Ace cards
could be used to represent audio effects.

Pitch shifter 7 We do not deem this effect absolutely
necessary.

Tempo shifter 7 We do not deem this effect absolutely
necessary.

Song syncing X All tracks will be in sync.
Looping X As long as a gambler is at the table, his

or her track will keep looping as part of
the main mix.

Sequencing X By controlling the players at the ta-
ble (kicking them away, replacing them,
keeping them), the croupier is in charge
of sequencing.

Table 5.4 The implementation of DJ equipment features in the gambling
metaphor. See Section 1.1 for an explanation of these features. Note that this
metaphor is not implemented in this thesis.

5 TactoSonix: Software Design 66

The first view of the Making music is cooking software environment is shown in

Figure 5.1. When the user enters the system, a kitchen burner (or cooking pot) is shown, its

transparency pulsating at a constant rhythm. The point on the edge of the burner moves

discretely at the same rhythm, in a clockwise manner between 16 positions. It indicates the

current beat within a 16-step sequencer. The diagram in the top left corner of the interface

shows which of the four burners the user is currently watching.

Fig. 5.1 The first screen of the TactoSonix cooking metaphor environment

By exploiting the metaphor of a kitchen top and using the top left diagram, we wish

to lead the user towards an intuitive expectation of more than a single such burner. By

dragging a single finger on the surface while not touching the burner, the user will be able

to navigate between the different stovetops, as shown in Figure 5.2.

The blue half-circle at the bottom of the GUI is always shown, and represents the

root node of a Stacked Half-Pie Menu (SHPM) [4] (see Section 3.1.6). This menu opens

a first level of nodes, from which a second level can be triggered. An illustration of the

5 TactoSonix: Software Design 67

Fig. 5.2 A focus position resulting in an approximately equal contribution
of each audio channel

5 TactoSonix: Software Design 68

unwrapped menu is Figure 5.3. The first level has three polygons with a different number

of sides representing three groups of samples: percussions (square), bass (pentagon), and

lead instrument (hexagon). The second level of nodes represent the samples themselves.

As such, all nodes at the second level have the same number of sides. They differ by colour:

red represents country music, purple represents funk, blue represents hip hop, and green

represents jazz.

Fig. 5.3 The unwrapped Stacked Half-Pie Menu showing a choice of audio
tracks. The first menu represents – from left to right – lead instruments, bass,
and percussions. The second menu represents – from left to right – jazz drums,
hip hop drums, funk drums, and country drums.

5.4.2 Interaction and Visual Feedback

Once open, the software will display a collapsed Stacked Half-Pie Menu, as is visible in

Figure 5.1: with one touch or click, the user unrolls the next level of the menu. Trying to

5 TactoSonix: Software Design 69

expand the leaf node of a SHPM, the user will discover that these nodes can be drag-and-

dropped. Dropping such a loop node randomly makes it disappear, but dropping it on the

pulsating burner illustration will keep the node alive, and will start playing the associated

loop.

Once dropped on a burner, a node can be moved around. Doing so will both affect

the sound and bring up visual feedback about its track. This is shown in Figures 5.4 and

5.5. The first image shows the country drum loop (represented by a red square) drawn

with a red curve going through its centre. This line’s width and opacity are mapped to the

volume of the track. The star-like symbol inside the visual feedback represents the cutoff

frequency of the lowpass filter applied to the track. The rounder the shape, the lower

the cutoff frequency. The vertical position of the node within the stovetop determines the

cutoff frequency of the low-pass filter (higher means almost no filtering, lower means low

cutoff frequency). This choice of representation is inspired by the work of O’Sullivan and

Borland in exploring correlations between graphical controller shape and audio spectrum

[87]. O’Sullivan and Borland focused on sound synthesis and used a rounder shape to

represent a single tone, and a more pointed shape to represent a richer sound with many

harmonics. We instead choose to represent the cutoff frequency of a low-pass filter.

The crosshair visible in Figure 5.4 appears because the user dragged a node close to the

centre of the kitchen burner. This has the effect of looping the specific track over a number

of beats. The number of beats of this loop is determined by the quadrant in which the

node is: the top-right quadrant will trigger loops of one beat, the bottom-right quadrant

will trigger loops of two beats, the bottom-left quadrant will trigger loops of four beats,

and the top-left quadrant will trigger loops of eight beats.

One can then understand that a simple drag-and-drop of nodes may affect various

parameters at the same time: they can be made “integrable” [72] if they are perceived

as such. In our implementation, a user may affect up to three parameters (volume, low-

pass cut-off frequency, and loop length) with a single drag motion. Multi-touch interaction

means that with just 3 fingers, up to nine parameters can be confused. This integrability

of parameters forces the user to interact within a constrained environment, and serves our

purpose by both facilitating the mixing of music and taking full advantage of multi-touch

technology.

The user may only play one track per instrument type: we force the sound to be

coherent by not allowing concurrent loops serving the same purpose (percussions, bass, or

5 TactoSonix: Software Design 70

lead instrument) to overlap.

Fig. 5.4 Dragging a node around (the red square) displays visual feedback
about the associated audio track’s volume, low-pass cutoff frequency, and loop
length.

5.4.3 Audio Environment

The audio samples of our musical software environment are categorized based on type of

instrument (percussions, bass, or lead instrument) and musical genre (country, funk, hip-

hop, jazz). By isolating musical genre and instrument, our choice of loops has resulted in

a software environment that facilitates the cross-genre exploration of music.

The creation of musically coherent content is enforced by restrictions to the number of

concurrent loops playing and by locking all the starts of samples to fall musicon beat. We

leave room to creation by letting loops start on any beat (and not just on the first beat of

the sequencer) and implementing a feature through which new sounds may be generated:

5 TactoSonix: Software Design 71

Fig. 5.5 Dragging a node around (the red hexagon) displays visual feed-
back about the associated audio track’s volume and low-pass cutoff frequency,
looping being disabled due to the node being outside the looping zone of the
stovetop. The visual feedback showing that the node is not looping at one,
two, four, or eight beats, is that no crosshair is visible in the cooking pot, as
opposed to Figure 5.4.

5 TactoSonix: Software Design 72

the looping feature, which can drastically change the melody.

5.4.4 Comparison with Traditional DJing Equipment

This software environment is not meant as an implementation of or a substitute for DJing

equipment, but as an introduction for anyone to some of the tools used by DJs. It leaves

out certain features such as beat matching, pitch shifting, and tempo shifting for technical

reasons (implementing low-level sound processing algorithms across different platforms was

not the focus of this thesis), while implementing other features in a much different manner.

For instance, crossfading is performed by dragging one finger across the background in

our software. DJs perform this task using a linear potentiometer that has mechanical

characteristics (e.g., weight and mid-position lock) with which a DJ is highly familiar; a

DJ sometimes switches between the crossfader’s two extreme positions at a rate that would

be unfeasible using our software environment. Instead of providing the same level of control,

we offer a simplified version of crossfading.

This software, through its user interface metaphor inspired from cooking, provides an

environment for the exploration of musical concepts common in music production but not

necessarily among the general public: sequencing, audio filtering, looping, and the mixing

of several audio channels.

5.5 Technical Details

TactoSonix is an add-on for OpenFrameworks4, a C++ programming framework. It pro-

vides several GUI elements that can be used in the development of multi-touch software in

order to replace traditional GUI elements. For the software documentation of our system,

we point the reader to Appendix A.

TactoSonix is available at http://www.idmil.org/projects/tactosonix.

5.6 Summary

In this chapter, we narrowed down our software’s design by placing the musical system

within different classifications for interactive environments. We then described brainstorm-

ing ideas about user interface metaphor in the form of inferences and a checklist of features,

4http://www.openframeworks.cc, accessed 2012/08/08

5 TactoSonix: Software Design 73

before presenting the implementation of the first proposed metaphor, Making music is

cooking. This novel, informal approach to software design seems to us to best fit the

brainstorming process, given that it does not provide all the implementation details that

arise when exhaustive software documentation is required.

The next chapter will conclude this thesis with a discussion of our hypothesis, contri-

butions and further possible work.

74

Chapter 6

Conclusions and Recommendations

This thesis presented a historical overview of touch-enabled technology and a short pre-

sentation of the task of DJing in Chapter 1, before analyzing methods for the implementa-

tion of multi-touch functionality and introducing a taxonomy of multi-touch hardware in

Chapter 2. Chapter 3 discussed software-related considerations in multi-touch technology

and reviewed existing multi-touch musical applications, while the concepts of metaphor

and conceptual integration were introduced from the perspective of software design. Tac-

toSonix, our framework for the development of novel user interfaces geared towards music

production, is the subject of Chapter 5. The current chapter concludes this thesis with a

discussion of our hypothesis, contributions, and possible further work.

Our hypothesis was “that the use of user interface metaphors unrelated to conventional

musical hardware, combined with innovative (non-WIMP) GUI controls, provides a basis

for the development of multi-touch software that facilitates certain DJ tasks, with the aim

of obtaining musically satisfying results with a steeper learning curve than standard DJ

equipment” (see Section 1.3).

Our implementation of such software is presented in TactoSonix 1. Our software uses

the TactoSonix framework to implement a blend – a product of conceptual integration (see

Section 4.1.3) – based on the metaphor Making music is cooking.

We present our software as a first attempt at implementing innovative user interface

metaphors for the purpose of mixing music. A contribution to the field of music technology,

and more particularly to multi-touch software for musical applications, is an exploration

1http://www.idmil.org/projects/tactosonix, accessed 2012/08/07 (see Section 5.4)

6 Conclusions and Recommendations 75

into informal software design using conceptual integration and user interface metaphor.

The proposal of a new taxonomy for multi-touch hardware is another contribution; it can

be used to choose between different technologies when a touch-enabled system needs to

be designed, and is accompanied by examples of hardware placed within the taxonomy.

Our literature review of musical touch-enabled applications provides a new reference for

multi-touch technology researchers and the music technology community.

The objective of our software being to provide an accessible interface for DJing, our

software allows users to combine different musical genres with very little understanding of

music theory. The design of TactoSonix was inspired by the concepts of metaphor and

blending, which we hope to see used more often in the context of graphical user interface

design. We applied this approach to the design of two novel metaphors, Making music

is cooking and Making music is gambling, and implemented the former.

Limitations

The taxonomy we introduced provides a detailed overview of methods for the implementa-

tion of multi-touch functionality. We recognize the fact that it does not discuss implemen-

tation costs, or that it might become obsolete as new technologies arise. The taxonomy

presented in Table 2.1 could also be improved by adding to it some of the missing examples.

The use of metaphor and conceptual integration for software design generates innova-

tive ideas that can lead to innovative user interfaces. Such an approach is not as refined

as traditional software design methods, in that it only provides general guidelines for the

implementation of the metaphors. Many decisions that must be taken to finalize the soft-

ware lie outside the scope of blending for software design. Despite this limitation, we argue

that the power of conceptual integration to generate novel ideas out of separate concepts

justifies its use, if only for the brainstorming steps of software design.

Our analysis did not focus on other figures of speech such as analogy [118], simile [118],

or anaphora [41]. We invite other researchers to explore the potential application of other

figures of speech to software design and music.

6 Conclusions and Recommendations 76

Further work

Several improvements could be made to our software implementation of the Making music

is cooking metaphor, including control over more audio effects and a more thorough anal-

ysis of feedback options for all parameters. Performing a user study could help us formally

evaluate our hypothesis. Implementing new user interface metaphors, such as Making

music is gambling (see Section 5.3.3), would help highlight the power of conceptual

integration for this purpose.

Developing a mobile version would be an accessible challenge, given that TactoSonix

runs on OpenFrameworks, and that OpenFrameworks has support for both Google and

Apple devices. In terms of aesthetics, we understand that the user interface and audio

samples would greatly benefit from some artistic input. We invite other researchers and

industry members to start developing novel interfaces using conceptual blending in order

to see new ideas emerge out of the more interesting features of two conceptual frames.

The author has worked on two other software environments related to music. The first

one was a port of Different Strokes [119] to OpenFrameworks for multi-touch support and

easier cross-platform integration. Different Strokes was designed by Mark Zadel, an IDMIL

colleague of the author, and allows users to control the playback and sequencing of audio

samples with an interface based on drawn curves. The second piece of software is Face-

Quencer 2, a camera-based sequencer that reads fiducials. It was presented by the author at

Music Hack Day Montreal 2011 3, a weekend of music programming and electronics, where

it was voted crowd favourite4. Combining these two environments with TactoSonix could

lead to a new immersive multi-platform DJing environment for webcam and tablet input.

2http://www.idmil.org/software/facequencer, accessed 2012/08/08
3http://montreal.musichackday.org/2011/index.php?page=Main+page, accessed 2012/08/08
4http://createdigitalmusic.com/2011/10/face-sequencers-sonic-databases-automatic-dub-remixes-

more-montreal-music-hackday-hacks/, accessed 2012/08/08

77

Appendix A

Software documentation

This section includes basic documentation for our source code in the form of graphics.

It will be most helpful to people with experience in computer science, to understand the

structure of our thought within the OpenFrameworks environment.

For the complete source code, detailed documentation, and installation instructions,

please refer to http://www.idmil.org/projects/tactosonix (accessed 2012/08/13).

Fig. A.1 Dependency graph for main.cpp, the entry point for TactoSonix.
Note the presence of the metaphorKitchen class, which most importantly in-
cludes a Stacked Half-Pie Menu (class ofxTactoSHPM) and a stovetop (class
ofxStoveTop). This graph shows how TactoSonix was designed to allow for
the implementation of multiple metaphors.

A Software documentation 78

Fig. A.2 Dependency graph for ofxStovetop, the class that implements a
stove top in TactoSonix. Note the fact that the stovetop class includes the
ofxPot class: in our model, a stovetop is a cooking pot ofxPot (or kitchen
burner) as well as some stove information (see the top-left corners of Images
5.4 and 5.5)

79

References

[1] E. Johnstone, “The rolky: a poly-touch controller for electronic music,” in Proceedings
of the International Computer Music Conference, pp. 291–5, 1985.

[2] L. Haken, K. Fitz, P. Wolfe, and P. Christensen, “A continuous music keyboard con-
trolling polyphonic morphing using bandwidth-enhanced oscillators,” in Proceedings
of the International Computer Music Conference, 1997.

[3] A. Crevoisier, C. Bornand, A. Guichard, S. Matsumura, and C. Arakawa, “Sound
rose: creating music and images with a touch table,” in Proceedings of the Interna-
tional Conference on New Interfaces for Musical Expression, pp. 212–5, 2006.

[4] T. Hesselmann, S. Flöring, and M. Schmitt, “Stacked half-pie menus - navigating
nested menus on interactive tabletops,” in Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces, pp. 173–80, ACM, 2009.

[5] H. Benko, A. D. Wilson, and P. Baudisch, “Precise selection techniques for multi-
touch screens,” in Proceedings of the SIGCHI conference on Human Factors in Com-
puting Systems, pp. 1263–72, ACM, 2006.

[6] A. v. Dam, “Post-wimp user interfaces,” Communications of the ACM, vol. 40, no. 2,
pp. 63–7, 1997.

[7] W. Buxton, R. Hill, and P. Rowley, “Issues and techniques in touch-sensitive tablet
input,” in Proceedings of the 12th annual conference on Computer graphics and in-
teractive techniques, pp. 215–24, 1985.

[8] G. W. Fitzmaurice and W. Buxton, “An empirical evaluation of graspable user inter-
faces,” in Proceedings of the ACM CHI Conference on Human Factors in Computing
Systems, pp. 43–50, ACM, 1997.

[9] S. Jordà, M. Kaltenbrunner, G. Geiger, and R. Bencina, “The reactable,” in Proceed-
ings of the International Computer Music Conference, pp. 579–82, 2005.

References 80

[10] R. T. Murphy and L. R. Appeal, “Evaluation of the plato iv computer-based educa-
tion system in the community college,” SIGCUE Outlook, vol. 12, no. 1, pp. 12–28,
1978.

[11] C. F. Herot and G. Weinzapfel, “One-point touch input of vector information for
computer displays,” in SIGGRAPH Computer Graphics, vol. 12, pp. 210–6, 1978.

[12] L. Sasaki, G. Fedorkow, W. Buxton, C. Retterath, and K. Smith, “A touch-sensitive
input device,” in Proceedings of the International Computer Music Conference,
pp. 293–7, 1981.

[13] S. K. Lee, W. Buxton, and K. C. Smith, “A multi-touch three dimensional touch-
sensitive tablet,” in Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pp. 21–5, 1985.

[14] R. A. Moog, “A mulitply touch-sensitive clavier for computer music,” in Proceedings
of the International Computer Music Conference, pp. 601–5, 1982.

[15] J. Eaton and R. Moog, “Multiple-touch-sensitive keyboard,” in Proceedings of the
International Conference on New Interfaces for Musical Expression, pp. 258–9, Na-
tional University of Singapore, 2005.

[16] L. Haken, R. Abdullah, and M. Smart, “The continuum: a continuous music key-
board,” in Proceedings of the International Computer Music Conference, pp. 81–4,
1992.

[17] R. Pinkston, J. Kerkhoff, and M. McQuilken, “A touch sensitive dance floor/midi
controller,” in Proceedings of the International Computer Music Conference, pp. 224–
5, 1995.

[18] D. Wessel, “Hands on - a new work from slabs controller and generative algorithms,”
in Proceedings of the International Conference on New Interfaces for Musical Expres-
sion, pp. 242–5, 2009.

[19] J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,”
in Proceedings of the 18th annual ACM symposium on User Interface Software and
Technology, pp. 115–8, ACM, 2005.

[20] K. P. Fishkin, “A taxonomy for and analysis of tangible interfaces,” Personal Ubiq-
uitous Computing, vol. 8, no. 5, pp. 347–58, 2004.

[21] L. H. Nakatani and J. A. Rohrlich, “Soft machines: a philosophy of user-computer
interface design,” in Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, pp. 19–23, ACM, 1983.

References 81

[22] J. D. Smith, T. C. N. Graham, D. Holman, and J. Borchers, “Low-cost malleable
surfaces with multi-touch pressure sensitivity,” in Proceedings of the Second Annual
IEEE International Workshop on Horizontal Interactive Human-Computer Systems,
pp. 205–8, 2007.

[23] M. Gao and C. Hanson, “Lumi: live performance paradigms utilizing software in-
tegrated touch screen and pressure sensitive button matrix,” in Proceedings of the
International Conference on New Interfaces for Musical Expression, pp. 58–9, 2009.

[24] D. Wessel, R. Avizienis, A. Freed, and M. Wright, “A force sensitive multi-touch
array supporting multiple 2-d musical control structures,” in Proceedings of the In-
ternational Conference on New Interfaces for Musical Expression, pp. 41–5, 2007.

[25] M. R. Minsky, “Manipulating simulated objects with real-world gestures using a force
and position sensitive screen,” in SIGGRAPH Computer Graphics, vol. 18, pp. 195–
203, 1984.

[26] P. Dietz and D. Leigh, “Diamondtouch: a multi-user touch technology,” in Proceed-
ings of the 14th annual ACM symposium on User Interface Software and Technology,
pp. 219–26, ACM, 2001.

[27] C. Sousa and M. Matsumoto, “Study on fluent interaction with multi-touch in tradi-
tional gui environments,” in Proceedings of TENCON - IEEE Region 10 Conference,
pp. 1–4, 2007.

[28] Y. Jansen, T. Karrer, and J. Borchers, “Mudpad: tactile feedback and haptic texture
overlay for touch surfaces,” in ACM International Conference on Interactive Tabletops
and Surfaces, pp. 11–4, ACM, 2010.

[29] R. Verrillo, “Vibration sensation in humans,” Music Perception, vol. 9, no. 3, pp. 281–
302, 1992.

[30] C. Chafe, “Tactile audio feedback,” in Proceedings of the International Computer
Music Conference, pp. 224–5, 1993.

[31] D. M. Birnbaum and M. M. Wanderley, “A systematic approach to musical vibro-
tactile feedback,” in Proceedings of the International Computer Music Conference,
pp. 397–404, 2007.

[32] M. Giordano and M. M. Wanderley, “A learning interface for novice guitar players us-
ing vibrotactile stimulation,” in Proceedings of the 8th Sound and Music Conference,
2011.

References 82

[33] J. Schöning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook, M. Löchtefeld,
N. Motamedi, L. Muller, P. Olivier, T. Roth, and U. von Zadow, “Multi-touch sur-
faces: a technical guide,” tech. rep., Technical University of Munich, 2008.

[34] P. Bottoni, R. Caporali, D. Capuano, S. Faralli, A. Labella, and M. Pierro, “Use of a
dual-core dsp in a low-cost, touch-screen based musical instrument,” in Proceedings
of the International Conference on New Interfaces for Musical Expression, pp. 394–5,
2007.

[35] J. Hochenbaum and O. Vallis, “Bricktable: a musical tangible multi-touch interface,”
in Proceedings of the Berlin Open Conference, 2009.

[36] J. Loviscach, “Two-finger input with a standard touch screen,” in Proceedings of the
20th annual ACM symposium on User Interface Software and Technology, (1294239),
pp. 169–72, ACM, 2007.

[37] J. P. Carrascal and S. Jordà, “Multitouch interface for audio mixing,” in Proceedings
of the International Conference on New Interfaces for Musical Expression, pp. 100–3,
2011.

[38] T. Beamish, K. Maclean, and S. Fels, “Manipulating music: multimodal interaction
for djs,” in Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 327–34, ACM, 2004.

[39] K. F. Hansen and R. Bresin, “Mapping strategies in dj scratching,” in Proceedings of
the International Conference on New Interfaces for Musical Expression, pp. 188–91,
2006.

[40] K. F. Hansen, The acoustics and performance of DJ scratching. PhD thesis, School
of Computer Science and Communication, Royal Institute of Technology, Stockholm,
Sweden, 2010.

[41] L. Zbikowski, Conceptualizing Music: Cognitive Structure, Theory, and Analysis.
Oxford University Press, 2005.

[42] C. Palombini, “Machine songs v: Pierre schaeffer: from research into noises to exper-
imental music,” Computer Music Journal, vol. 17, no. 3, pp. 14–9, 1993.

[43] J. Hurtienne and J. H. Israel, “Image schemas and their metaphorical extensions:
intuitive patterns for tangible interaction,” in Proceedings of the 1st international
conference on Tangible and Embedded Interaction, (1226996), pp. 127–34, ACM, 2007.

[44] D. Kammer, G. Freitag, M. Keck, and M. Wacker, “Taxonomy and overview of multi-
touch frameworks: architecture, scope and features,” in Proceedings of the Workshop
on Engineering Patterns for Multitouch Interfaces, 2010.

References 83

[45] J. A. Pickering, “Touch-sensitive screens: the technologies and their application,”
International Journal of Man-Machine Studies, vol. 25, no. 3, pp. 249–69, 1986.

[46] K. Hinckley and M. Sinclair, “Touch-sensing input devices,” in Proceedings of the
SIGCHI conference on Human factors in computing systems: the CHI is the limit,
pp. 223–30, ACM, 1999.

[47] A. Crevoisier and G. Kellum, “Transforming ordinary surfaces into multi-touch con-
trollers,” in Proceedings of the International Conference on New Interfaces for Musical
Expression, pp. 113–6, 2008.

[48] M. Montag, S. Sullivan, S. Dickey, and C. Leider, “A low-cost and low-latency multi-
touch table with haptic feedback for musical applications.,” in Proceedings of the
International Conference on New Interfaces for Musical Expression, pp. 8–13, 2011.

[49] A. D. Wilson, “Touchlight: an imaging touch screen and display for gesture-based
interaction,” in Proceedings of the 6th international conference on Multimodal Inter-
faces, pp. 69–76, ACM, 2004.

[50] C. Harrison, H. Benko, and A. D. Wilson, “Omnitouch: wearable multitouch in-
teraction everywhere,” in Proceedings of the 24th annual ACM symposium on User
Interface Software and Technology, pp. 441–50, ACM, 2011.

[51] J. Letessier and F. Brard, “Visual tracking of bare fingers for interactive surfaces,”
in Proceedings of the 17th annual ACM symposium on User Interface Software and
Technology, pp. 119–22, ACM, 2004.

[52] R. Jones, P. Driessen, A. Schloss, and G. Tzanetakis, “A force-sensitive surface for
intimate control,” in Proceedings of the International Conference on New Interfaces
for Musical Expression, 2009.

[53] J. Rekimoto, “Smartskin: an infrastructure for freehand manipulation on interactive
surfaces,” in Proceedings of the SIGCHI conference on Human Factors in Computing
Systems: changing our world, changing ourselves, pp. 113–20, ACM, 2002.

[54] T. S. Saponas, C. Harrison, and H. Benko, “Pockettouch: through-fabric capacitive
touch input,” in Proceedings of the 24th annual ACM symposium on User Interface
Software and Technology, pp. 303–8, ACM, 2011.

[55] A. Freed, “Novel and forgotten current-steering techniques for resistive multitouch,
duotouch, and polytouch position sensing with pressure,” in Proceedings of the In-
ternational Conference on New Interfaces for Musical Expression, 2009.

[56] R. Jones, “Mtc express multi-touch controller,” Computer Music Journal, vol. 25,
no. 1, pp. 97–9, 2001.

References 84

[57] P.-A. Albinsson and S. Zhai, “High precision touch screen interaction,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 105–12,
ACM, 2003.

[58] A. M. Hlady, “A touch sensitive x-y position encoder for computer input,” in Pro-
ceedings of the November 18-20, 1969, fall joint computer conference, pp. 545–51,
ACM, 1969.

[59] C. Harrison, J. Schwarz, and S. E. Hudson, “Tapsense: enhancing finger interac-
tion on touch surfaces,” in Proceedings of the 24th annual ACM symposium on User
Interface Software and Technology, pp. 627–36, ACM, 2011.

[60] 3M, “Technology profile - dispersive signal touch technology,” 2008.

[61] S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues,
“Going beyond the display: a surface technology with an electronically switchable dif-
fuser,” in Proceedings of the 21st annual ACM symposium on User Interface Software
and Technology, pp. 269–78, ACM, 2008.

[62] M. Kaltenbrunner, T. Bovermann, R. Bencina, and E. Costanza, “Tuio: a protocol for
table-top tangible user interfaces,” in Proceedings of the 6th Internationall Workshop
on Gesture in Human-Computer Interaction and Simulation, 2005.

[63] A. Gokcezade, J. Leitner, and M. Haller, “Lighttracker: an open source multi-touch
toolkit,” in Proceedings of the ACM International Conference on Advances in Com-
puter Entertainment Technology, 2010.

[64] G. Kellum and A. Crevoisier, “A flexible mapping editor for multi-touch musical
instruments,” in Proceedings of the International Conference on New Interfaces for
Musical Expression, 2009.

[65] R. L. Potter, L. J. Weldon, and B. Shneiderman, “Improving the accuracy of touch
screens: an experimental evaluation of three strategies,” in Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, pp. 27–32, ACM, 1988.

[66] A. Sears and B. Shneiderman, “High precision touchscreens: design strategies and
comparisons with a mouse,” International Journal of Man-Machine Studies, vol. 34,
no. 4, pp. 593–613, 1991.

[67] L. Hoste, “Software engineering abstractions for the multi-touch revolution,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
vol. 2, pp. 509–10, ACM, 2010.

[68] D. Rubine, “Specifying gestures by example,” SIGGRAPH Computer Graphics,
vol. 25, no. 4, pp. 329–37, 1991.

References 85

[69] T. Moscovich and J. F. Hughes, “Indirect mappings of multi-touch input using one
and two hands,” in Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pp. 1275–83, ACM, 2008.

[70] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based hand-gesture applica-
tions,” Commun. ACM, vol. 54, no. 2, pp. 60–71, 2011.

[71] G. Vigliensoni and M. M. Wanderley, “Soundcatcher: explorations in audio-looping
and time-freezing using an open-air gestural controller,” in Proceedings of the Inter-
national Computer Music Conference, 2010.

[72] R. J. K. Jacob, L. E. Sibert, D. C. McFarlane, and J. M. Preston Mullen, “Inte-
grality and separability of input devices,” ACM Transactions on Computer-Human
Interaction, vol. 1, no. 1, pp. 3–26, 1994.

[73] G. Kurtenbach and W. Buxton, “User learning and performance with marking
menus,” in Proceedings of the SIGCHI conference on Human factors in computing
systems: celebrating interdependence, pp. 258–64, ACM, 1994.

[74] G. Geiger, “Using the touch screen as a controller for portable computer music instru-
ments,” in Proceedings of the International Conference on New Interfaces for Musical
Expression, pp. 61–4, 2006.

[75] N. Liebman, M. Nagara, J. Spiewla, and E. Zolkosky, “Cuebert: a new mixing board
concept for musical theatre,” in Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 51–6, 2010.

[76] A. Esenther and K. Ryall, “Fluid dtmouse: better mouse support for touch-based
interactions,” in Proceedings of the working conference on Advanced Visual Interfaces,
pp. 112–5, ACM, 2006.

[77] G. Ramos and R. Balakrishnan, “Zliding: fluid zooming and sliding for high precision
parameter manipulation,” in Proceedings of the 18th annual ACM symposium on User
Interface Software and Technology, pp. 143–52, ACM, 2005.

[78] C. Forlines and C. Shen, “Dtlens: multi-user tabletop spatial data exploration,”
in Proceedings of the 18th annual ACM symposium on User Interface Software and
Technology, pp. 119–22, ACM, 2005.

[79] A. Olwal and S. Feinter, “Rubbing the fisheye: precise touchscreen interaction with
gestures and fisheye views,” in Conference Supplement of the ACM Symposium on
User Interface Software and Technology, pp. 83–4, 2003.

References 86

[80] S. R. Ness and G. Tzanetakis, “Audioscapes: exploring surface interfaces for mu-
sic exploration,” in Proceedings of the International Computer Music Conference,
pp. 303–6, 2009.

[81] M. Torrens, P. Hertzog, and J.-L. Arcos, “Visualizing and exploring personal music
libraries,” in Proceedings of the 5th International Conference on Music Information
Retrieval, pp. 421–4, 2004.

[82] S. Hitchner, J. Murdoch, and G. Tzanetakis, “Music browsing using a tabletop dis-
play,” in Proceedings of the 8th International Conference on Music Information Re-
trieval, 2007.

[83] J. Hochenbaum, O. Vallis, D. Diakopoulos, J. Murphy, and A. Kapur, “Designing
expressive musical interfaces for tabletop surfaces,” in Proceedings of the International
Conference on New Interfaces for Musical Expression, pp. 315–8, 2010.

[84] R. Laney, C. Dobbyn, A. Xamb, M. Schirosa, D. Miell, K. Littleton, and N. Dalton,
“Issues and techniques for collaborative music making on multi-touch surfaces,” in
Proceedings of the 7th Sound and Music Computing Conference, (Barcelona, Spain),
2010.

[85] G. Levin, “The table is the score: an augmented-reality interface for real-time, tan-
gible, spectrographic performance,” in Proceedings of the International Computer
Music Conference, 2006.

[86] G. Partridge, P. Irani, and G. Fitzell, “Let loose with wallballs, a collaborative table-
top instrument for tomorrow,” in Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 78–81, 2009.

[87] L. O’Sullivan and F. Boland, “Tailoring tabletop interfaces for musical control,” in
Proceedings of the ACM International Conference on Interactive Tabletops and Sur-
faces, pp. 331–4, ACM, 2010.

[88] P. L. Davidson and J. Y. Han, “Synthesis and control on large scale multi-touch
sensing displays,” in Proceedings of the International Conference on New Interfaces
for Musical Expression, pp. 216–9, 2006.

[89] M. Cicconet, I. Paterman, L. Velho, and P. Carvalho, “On multi-touch interfaces for
music improvisation: the blues machine project,” tech. rep., Vision and Graphics
Laboratory, National Institute of Pure and Applied Mathematic, 2010.

[90] T. Rhea, “The sackbut blues: Hugh le caine: Pioneer in electronic music by gayle
young,” Computer Music Journal, vol. 19, no. 4, pp. 96–9, 1995.

References 87

[91] L. Fyfe, S. Lynch, C. Hull, and S. Carpendale, “Surfacemusic: mapping virtual touch-
based instruments to physical models,” in Proceedings of the International Conference
on New Interfaces for Musical Expression, pp. 360–3, 2010.

[92] Y. Kuhara and D. Kobayashi, “Kinetic particles synthesizer using multi-touch screen
interface of mobile devices,” in Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 136–7, 2011.

[93] G. Roma and A. Xambó, “A tabletop waveform editor for live performance,” in Pro-
ceedings of the International Conference on New Interfaces for Musical Expression,
pp. 249–52, 2008.

[94] G. Lakoff, Contemporary Theory of Metaphor, ch. 11, pp. 202–51. Cambridge Uni-
versity Press, second ed., 1994.

[95] G. Lakoff and M. Johnson, Metaphors we live by. Chicago: University of Chicago
Press, 1980.

[96] L. M. Zbikowski, “Cross-domain mapping.,” Conceptualizing Music, vol. 1, pp. 63–96,
2002.

[97] P. Barr, R. Khaled, J. Noble, and R. Biddle, “A taxonomic analysis of user-interface
metaphors in the microsoft office project gallery,” in Proceedings of the Sixth Aus-
tralasian conference on User interface - Volume 40, pp. 109–17, Australian Computer
Society, Inc., 2005.

[98] G. Fauconnier and M. Turner, The way we think: conceptual blending and the mind’s
hidden complexities. Basic Books, 2003.

[99] J. L. Alty, R. P. Knott, B. Anderson, and M. Smyth, “A framework for engineering
metaphor at the user interface,” Interacting with Computers, vol. 13, no. 2, pp. 301–
22, 2000.

[100] M. Imaz and D. Benyon, Designing with blends: conceptual foundations of human-
computer interaction and software engineering. MIT Press, 2007.

[101] D. Saffer, “The role of metaphor in interaction design,” Master’s Thesis, The School
of Design, Carnegie Mellon University, Pittsburgh, PA, USA, 2005.

[102] A. Gadd and S. Fels, “Metamuse: metaphors for expressive instruments,” in Pro-
ceedings of the International Conference on New interfaces for Musical Expression,
(1085206), pp. 1–6, National University of Singapore, 2002.

References 88

[103] S. Fels, A. Gadd, and A. Mulder, “Mapping transparency through metaphor: towards
more expressive musical instruments,” Organised Sound, vol. 7, no. 2, pp. 109–26,
2002.

[104] M. Duignan, J. Noble, P. Barr, and R. Biddle, “Metaphors for electronic music
production in reason and live,” in Proceedings of the 6th Asian Pacific Conference
on Computer Human Interaction (M. Masoodian, S. Jones, and B. Rogers, eds.),
vol. 3101 of Lecture Notes in Computer Science, pp. 111–20, Springer Berlin / Hei-
delberg, 2004.

[105] O. Bau, A. Tanaka, and W. E. Mackay, “The a20: musical metaphors for interface
design,” in Proceedings of the International Conference on New Interfaces for Musical
Expression, pp. 91–6, 2008.

[106] D. Wessel and M. Wright, “Problems and prospects for intimate musical control of
computers,” in Proceedings of the International Conference on New Interfaces for
Musical Expression, pp. 1–4, National University of Singapore, 2001.

[107] L. Dahl and G. Wang, “Sound bounce: physical metaphors in designing mobile music
performance,” in Proceedings of the International Conference on New Interfaces for
Musical Expression, pp. 178–81, 2010.

[108] B. Wöldecke, C. Geiger, H. Reckter, and F. Schulz, “Antracks 2.0 - generative music
on multiple multitouch devices,” in Proceedings of the International Conference on
New Interfaces for Musical Expression, pp. 348–51, 2010.

[109] I. Stavness, J. Gluck, L. Vilhan, and S. Fels, “The musictable: a map-based ubiq-
uitous system for social interaction with a digital music collection,” in Proceedings
of the International Conference on Entertainment Computing, vol. 3711 of Lecture
Notes in Computer Science, pp. 291–302, Springer Berlin / Heidelberg, 2005.

[110] A. Bragdon, A. Uguray, D. Wigdor, S. Anagnostopoulos, R. Zeleznik, and R. Feman,
“Gesture play: motivating online gesture learning with fun, positive reinforcement
and physical metaphors,” in Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces 2010, pp. 39–48, ACM, 2010.

[111] S. Malik, A. Ranjan, and R. Balakrishnan, “Interacting with large displays from a dis-
tance with vision-tracked multi-finger gestural input,” in Proceedings of the 18th an-
nual ACM symposium on User Interface Software and Technology, pp. 43–52, ACM,
2005.

[112] R. Rowe, Interactive Music Systems: Machine Listening and Composing. MIT Press,
1993.

References 89

[113] J. Drummond, “Understanding interactive systems,” Organised Sound, vol. 14, no. 2,
pp. 124–33, 2009.

[114] B. Bongers, Physical Interfaces in the Electronic Arts Interaction Theory and Inter-
facing Techniques for Real-time Performance. IRCAM, 2000.

[115] M. M. Wanderley and N. Orio, “Evaluation of input devices for musical expression:
borrowing tools from hci,” Computer Music Journal, vol. 26, no. 3, pp. 62–76, 2002.

[116] M. Wu and R. Balakrishnan, “Multi-finger and whole hand gestural interaction tech-
niques for multi-user tabletop displays,” 2003.

[117] D. Wessel, M. Wright, and J. Schott, “Intimate musical control of computers with a
variety of controllers and gesture mapping metaphors,” in Proceedings of the Inter-
national Conference on New Interfaces for Musical Expression, pp. 171–3, 2002.

[118] L. A. Wozny, “The application of metaphor, analogy, and conceptual models in com-
puter systems,” Interacting with Computers, vol. 1, no. 3, pp. 273–83, 1989.

[119] M. Zadel and G. Scavone, “Different strokes: a prototype software system for laptop
performance and improvisation,” in Proceedings of the International Conference on
New Interfaces for Musical Expression, pp. 168–71, 2006.

