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Abstract 

This thesis presents a method to visually detect and recognize fingering gestures of the left 

hand of a guitarist. The choice of computer vision to perform that task is motivated by 

the absence of a satisfying method for realtime guitarist fingering detection. The develop

ment of this computer vision method follows preliminary manual and automated analyses 

of video recordings of a guitarist. These first analyses led to sorne important findings about 

the design methodology of such a system, namely the focus on the effective gesture, the 

consideration of the action of each individu al finger, and a recognition system not relying 

on comparison against a knowledge-base of previously learned fingering positions. Moti

vated by these results, studies on three important aspects of a complete fingering system 

were conducted. One study was on realtime finger-localization, another on string and fret 

detection, and the last on movement segmentation. Finally, these concepts were integrated 

into a prototype and a system for left-hand fingering detection was developed. Such a 

data acquisition system for fingering retrieval has uses in music theory, music education, 

automatic music and accompaniment generation and physical modeling. 
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Sommaire 

Cette thèse présente un système axé sur la vision informatique permettant la détection et 

l'identification du doigté d'un guitariste. Le choix de la vision informatique comme méthode 

de traitement est motivé par l'absence d'un système de détection du doigté en temps réel 

satisfaisant pour les musiciens. Le développement de cette méthode a été précédé d'analyses 

manuelles et informatisées d'extraits vidéos d'un guitariste. Ces analyses préliminaires 

ont permis d'établir les caractéristiques nécessaires au développement d'un prototype de 

reconnaissance visuelle du doigté: l'accent sur le mouvement effectif, la considération de 

l'action individuelle de chaque doigt et l'établissement d'un système de reconnaissance ne 

reposant pas sur la comparaison avec une base de connaissances. Motivées par ces résultats, 

trois études ont été conduites. Une étude porte sur la détection de la position du bout des 

doigts en temps réel. Une autre est sur la détection des cordes et des frettes dans l'image. 

Une dernière étude traite de la segmentation du mouvement. Les résultats de ces trois 

études ont ensuite été combinés pour le développement d'un prototype et la réalisation 

d'un système de détection du doigté. Un système d'acquisition de données sur le doigté 

comme celui-ci a des applications en théorie de la musique, en éducation, en génération 

automatique de musique et d'accompagnements et en modélisation physique d'instruments. 
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Chapter 1 

Introduction 

This thesis presents a prototype to retrieve information about a guitarist left-hand finger

ing using computer vision. This chapter briefly discusses the motivations that led to the 

choice of the guitar as the instrument of study, the choice of gesture and especially left

hand fingering as the element of interest, and the choice of computer vision as the direct 

gesture acquisition method. Section 1.1 is a brief history of the guitar. It explains how 

the widespread usage of the guitar in many styles and cultures together with its affordable 

cost makes it an instrument of choice for this thesis. Section 1.2 discusses the study of ges

ture from two approaches, the Ruman-Computer Interaction (RCI) community approach 

and the music community approach. Section 1.3 explains the importance of the left-hand 

fingering gesture in the guitar sound' production. Section 1.4 and section 1.5 outline the 

objectives of the thesis and its possible implications on various fields of research. Finally, 

section 1.6 presents the structure of the thesis. 

1.1 The Guitar· 

The following definition of the guitar can be found on the Wikipedia's guitar webpage: 

The guitar is a fretted, stringed musical instrument. Guitars are used in 

a wide variety of musical styles, and are also widely known as a solo classical 

instrument. They are most recognized in popular culture as the primary in

strument in blues, country, and rock music. The guitar usually has six strings 

but 12 strings instruments are also found, these are used mostly in classical and 
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folk music. (Guitar section) 

It is precisely the popularity of the guitar among a wide variety of musical styles, 

musicians and cultures and its use as a solo, orchestra, and accompaniment instrument 

that make it interesting to study. The musicians who play it are either professionaUy 

trained musicians or self-learners without formaI musical training and they come from a 

variaty of styles: classical, flamenco, blues, pop, country, rock, jazz, etc. The guitar itself 

cornes in many "flavors" (acoustic: classical, flamenco, 12-string, etc., and electric), it is 

made of different materials and varies considerably in price. 

The guitar history and repertoire are rich. The first instruments resembling the guitar 

are believed to have appeared in the 2000-1500 BC and have been observed in ancient 

carvings and statues recovered from the old Iranian capitol of Susa. The modern six 

strings guitar is derived from the Spanish vihuela, dating from the antiquity. The earliest 

extant guitar is attributed to Gaetano Vinaccia an Italian luthiers from Naples and was 

built in 1779. The electric guitar was patented by George Beauchamp in 1936 (Wikipedia, 

2006). 

In conclusion, the guitar is an accessible and affordable instrument. It is played by a 

wide range of musicians in different styles. It is also a mature instrument with an established 

repertoire. AU these characteristics motivated the choice of the guitar for this study. 

1.2 The Study of Gesture 

Gesture is studied in many fields including human-human communication, human-computer 

interaction (HCI), and music. As it will be discuss in chapter 3 each field and even each 

branch of research attribute a different meaning to the word gesture and use a different 

terminology to describe it. However, there exist sorne common points. Gesture is asso

ciated with the motion of the body or of a limb and carries a meaning. In the context 

of human-human communication, this meaning will mostly be communicative, but in the 

context of HCI and music this meaning can also be manipulative. In fact, one goal of 

the HCI community is to make the usage of computer intuitive by creating interfaces that 

hum an can manipulate like everyday objects. The musical context is also composed of 

both communicative (expressions, emotions, etc.) and manipulative gestures (plucking, 

fingering, bowing, blowing, etc.) (Cadoz & Wanderley, 2000). 
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In traditional instruments, there exists a close link between the musician and his in

strument. As explained in Kvifte and Jensenius (2006), listeners are able to understand, 

at various degrees, the interplay between the musician, the instrument, and the resulting 

sound. The mechanical aspect of traditional physical instruments also provides the per

formers with various levels of feedback. An active branch of the music technology research 

is dedicated to the understanding of the gesture-sound relationship in both traditional and 

new instruments. A community of researchers is working to establish standards to describe 

gesture in music (Jensenius, Kvifte, & God0Y, 2006). 

1.3 Fingering in Guitar 

The sound produced by an instrument is infiuenced by its physical characteristics but also 

by the way the musician interacts with it. On an instrument like the guitar, both hands 

perform a distinct but complementary set of actions. The left-hand fingering gesture is 

the action performed by the musician to modify the string vibration length and, therefore, 

determines its pitch. The point where the musician presses the string against a fret is called 

the fingering point. 

Generally, many different fingering points can be used to pro duce the same pitch. In 

fact, each pitch can be fingered at one to four fret positions, and theoretically each fingered 

position could be played by any of the four fingers. Consequently, for a score containing n 

notes, there can exist a maximum of 16n combinations of (string, fret, finger). However, 

a professional musician will only consider a few of these possibilities. The choice of the 

appropriate fingering will therefore be determined by many factors, including philological 

analysis (interpretation of a sequence of notes), physical constraints due to the musical in

strument, and biomechanical constraints in the musician-instrument interaction (Radicioni, 

Anselma, & Lombardo, 2004b). Although the appropriate fingering might be obvious and 

intuitive for the experienced musician, beginners will often need external guidance because 

fingering indications are not always included in scores (Gilardino, 1975a, 1975b). 

1.4 Objectives and Motivations 

This thesis' main objective is the development of a prototype capable of investigating the 

feasibility and of exploring the potential of the use of computer vision to solve the guitar 
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left-hand fingering problem in realtime during "real" playing situations (i.e. outside of 

a controlled environment). The choice of computer vision is motivated by the following 

constrains: 

1. The system should account for all factors involved in the choice of a fingering. A com

puter vision system analyses the musician solution, it is a direct gesture acquisition 

system, therefore, no assumptions are used on a preferred choice. 

2. The system should not need a priori information or analyses of the musical excerpt. 

A computer vision system takes only the musician's image in input and outputs the 

fingering. 

3. The musician should not have to adapt his playing style or to wear special devices 

for the system to output the fingering. Computer vision is a non-obtrusive way to 

ob tain gesture information. 

4. The system should be accessible in term of cost, ease to use and allow for the repro

ducibility of the results. 

1.5 Contributions to the Field 

Fingering retrieval is an important topic in music theory and performance. Guitarist finger

ing has being studied for education al purpose, to help beginners or non-musically trained 

amateurs (Wang & Li, 1997; Miura, Hirota, Hama, & Yanagida, 2004) and as a composi

tional help for non-guitarists (Truchet, 2004). It has also been studied for producing more 

realistic sounds in guitar physical models (Cuzzucoli & Lombardo, 1999; Laurson, Erkut, 

VaJimiiki, & Kuushankare, 2001) and in image modeling of a guitarist playing (Elkoura & 

Singh, 2003). AIso, it has impact in automatic music generation (Cabral, Zanforlin, Lima, 

Santana, & Ramalho, 2001), and in score and tablature generation. 

A fingering retrieval system can be useful in education where knowledge of fingering 

positions as played by an expert could be compared to that of an amateur to identify 

potential difficulties faced by beginners. In addition, further analysis of the left-hand 

gesture can permit the use of the system as a controller for self-accompaniment and sound 

synthesis. 

Finally, this research can benefit the HCI community since the testing of a selected 

group of finger-Iocalization algorithms on a specific musical problem, as investigated here, 
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can lead to improvements that would have been impossible in a more general context. lt 

is also possible that knowledge gained on the guitar could later be applied to other string 

instruments and, with small adaptations, to various instruments for which the fingering 

problem exists. 

1.6 Thesis Overview 

The remaining portion of this the sis is divided in seven chapters. Chapter 2 is a review of 

the existing methods for guitar fingering retrieval. Chapter 3 presents a terminology and 

methodology used by the human-computer interaction (HCl) computer vision community. 

The following chapt ers describe the pro cess that lead to the prototype. Chapter 4 describes 

a preliminary work using existing software components to solve the fingering recognition 

problem. Chapter 5 presents a study of four general purpose methods to locate fingertips. 

Chapter 6 explains how string and fret detection, fingertips localization, and movement 

segmentation were used together for the design and development of a guitarist fingering 

retrieval method based on computer vision. Chapter 7 and 8 discuss future work to be done 

to ameliorate the prototype and eventually make it widely usable and present the overall 

conclusions. 
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Chapter 2 

Fingering Recognition 

Fingering is an especially important aspect of guitar playing, as it is a fretted instrument 

where many combinations of string, fret, and finger positions can produce the same pitch. 

As discussed in the previous chapter, fingering retrieval is an important topic in music 

theory, music education, automatic music generation and physical modeling. Unfortunately, 

as Gilardino noted (1975a, 1975b), specific fingering information is rarely indicated in 

musical scores. 

Fingering can be deduced at several points of the music production process. Three main 

strategies are: 

• Pre-processing using score analysis; 

• realtime using MIDI guitars; 

• Post-processing using sound analysis; 

This chapter will review existing approaches for each of these three strategies. The first 

section will present a category of approaches based on score analysis. The second section 

will present approaches based on MIDI guitars and guitar-like controllers. The third section 

will present an approach based on sound analysis. Finally, a realtime approach based on 

computer vision will be presented. 

Fingering information can be retrieved through score analysis. The score is fragmented 

in phrases, and the optimum fingering for each phrase is determined by finding the short est 

path in an acyclic graph of an possible fingering positions. Weights are assigned to each 

position based on a set of rules. The problem with this approach is that it cannat account 

for an the factors infiuencing the choice of a specifie fingering, namely philological analysis 
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(interpretation of a sequence of notes), physical constraints due to the musical instrument, 

and biomechanical constraints in the musician-instrument interaction. Outputs of systems 

using this approach are similar to human solutions in many cases, but hardly deal with 

situations where the musical intention is more important then the biomechanical optimum 

fingering. 

Other systems retrieve the fingering during or after a human plays the piece. These 

approaches uses MIDI guitars or guitar-like controllers. Theoretically, using a MIDI guitar 

with a separate MIDI channel assigned to each string, it is possible to know in realtime 

which pitch is played on which string, thus determining the fret position. In practice 

however, MIDI guitar users report several problems, including a variation in the recognition 

time from one string to another and the necessity to adapt their playing technique to avoid 

glitches or false note triggers (Verner, 1995). Guitar-like controllers are instruments on 

their own and therefore musicians have to develop new playing styles that only mimic that 

of the traditional guitar. 

An approach using the third strategy is the study of the guitar timbre. Traube (2004) 

suggested a method relying on the recording of a guitarist. The method consists of analyzing 

the sound to identify the pitch, finding the plucking point and then determining the string 

length to evaluate the fingering point. Shortcomings of this method are that it works only 

when one note is played at the time, and the error range of the string length evaluation 

(and therefore the fingering evaluation) is better than one centimeter in the case of open 

strings but can be as high as eight centimeters in the case of fretted strings (Traube & 

Smith III, 2000). 

Fingering information can also be retrieve in realtime with the help of computer vision. 

The last section of this chapter presents an approach that has been used in concerts to 

control realtime sound effects applied to the live guitar sound output recorded by a micro

phone. This approach use a computer vision algorithm to locate the painted fingers of the 

musician captured throughout a video camera mounted on a tripod in front of the musician. 

This approach impose sorne constraints to the musician: that he paints his fingers and that 

he restrains his movement so that the guitar-neck is always at the same position in the 

captured image. 
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2.1 Pre-Processing: Analysis of the Score 

This ensemble of techniques consists of analyzing a score as input and producing an op

timum fingering for that score as output. Mostly aIl research in the field is based on 

representing aIl possible fingering triplets (string, fret, finger) for a musical excerpt using 

nodes of a graph and on assigning a weight to each edge according to a pre-determined set 

of rules. The graph is then searched for the optimum path that corresponds to the com

puted optimum fingering. Fingering of chords is determined using a similar rule strategy 

but is based on the computer science theory of Constraint Satisfaction Problem (CSP). 

Recent research on guitar fingering extends that of Sayegh (1989) that proposes a compu

tationally efficient solution to the fingering process in string instruments. It also has been 

influenced by the work of Parncutt, Sloboda, Clarke, Raekallio, and Desain (1997) with the 

extensions of Jacobs (2001) that proposed an ergonomie model for determining keyboard 

fingering from the analysis of short fragments of a score. 

In this section, a summary of the techniques used by Radicioni et al. (Radicioni et 

al., 2004b; Radicioni, Anselma, & Lombardo, 2004a; Radicioni & Lombardo, 2005b, 2005a; 

Radicioni, 2005) will be presented as it is the most complete and representative work in this 

field to the author knowledge. As it can be seen in figure 2.1, Radicioni's method is based 

on a prior manual segmentation of the score into musical phrases. In a second step, he 

applies a cognitive model of the human-instrument interaction to the musical phrase. This 

model is based on a behavioral study of the complexity of a guitarist left-hand movements 

by Heijink and Meulenbroek (2002), theoretical score analysis explanations by Gilardino 

(1975a, 1975b) and from insights of a professional guitarist. Using this model, the fingering 

information can be computed and output to any other system. To validate his system, 

Radicioni proposed the coupling of his system with a sound processing guitar physical 

model developed by Cuzzucoli and Lombardo (1999), since his interest is in automatic 

music performance. He claims that his approach is more cognitively reliable and closer to 

a hum an expert's solution than Sayegh's (1989) global optimization approach. 

2.1.1 Manual Score Analysis 

Even if there exist sorne attempts to do automatic score partitioning in the literature (Bod, 

2001,2002; Pardo & Birmingham, 2000), Radicioni chooses to manually segment the score 

in musical phrases. His principal motivations for segmenting the score in phrases are the 
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Fingering Information 

Figure 2.1 Fingering retrieval from score analysis algorithm (Radicioni et 
al., 2004b) 
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• "A global optimization approach [ ... ] is not cognitively reliable, since both human 

performers and listeners do break musical pieces into phrases, themes, motives, etc .... 

(Radicioni et al., 2004b, p.5)." 

• "Performing a piece of music implies discerning and emphasizing structural features 

of the music such as structural boundaries (Radicioni et al., 2004b, p.5)." 

• " [ ... ] If performers aims at clarifying the score structure by me ans of segmentation, 

then they willlikely employ fingering too in order to mark further those boundaries, 

being mainly concerned in "optimizing" fingering inside these margins(Radicioni et 

al., 2004b, p.5)." 

Therefore, using the assumption that the apparent natural tendency to break a musical 

piece or score into smaller structures also happens during the fingering pro cess, their system 

takes in input musical phrases segmented from the score by a professional musician. The 

system optimizes the fingering inside these phrases, first, and then finds the best possible 

fingering at the boundaries between each phrase. 

2.1.2 Human-Instrument Interaction Modeling 

The choice of the "best possible fingering" is done inside each phrase and then between 

the phrases by applying a model of the interaction between the human and the instrument. 

Generally, different fingerings can be used to pro duce the same pitch (see figure 2.2). The 
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choiee of the appropriate fingering will therefore be determined by many factors, including 

philological analysis (interpretation of a sequence of notes), physical constraints due to the 

musieal instrument, and biomechanical constraints in the human-instrument interaction 

(Gilardino, 1975a, 1975b). However, these constraints are sometimes conflicting and a 

Figure 2.2 Fingering ambiguity problem a) dots illustrate all the possible 
fingering for F4 (fa4) and b) squares illustrate all the possible fingering for E3 
(mi3) 

model has to compromise while keeping the emphasis on the most significant constraints. 

To create a human-instrument interaction model, Radicioni relies on the bio-mechanie 

assumption that the performer will choose the easiest solution for fingering. This has the 

advantage that in many cases, as Sayegh (1989) explained, this will also satisfy one of 

the musical intentions, that is, to produce homogenous sounds. In fact, as Heijink and 

Meulenbroek (2002) illustrated, a strategy that is biomechanically advantageous is to keep 

the hand at the same position. Hence, it also happens that remaining at the same position 

permits the production of sound of uniform quality because the hand thereby placed has 

access to section of strings of approximately equal length, therefore, the relative damping 

of higher harmonies of the different notes is similar (Sayegh, 1989). According to Radicioni 

tests, modeling the human-instrument interaction on biomechanieal constraints seems to be 

cognitively and musically acceptable. It is important to note, however, that this conclusion 

might only hold on a specific type of musical excerpts. 

To model the human-instrument interacti~n (figure 2.3), Radicioni relies on Heijink's 

and Meulenbroek's (2002) study on the complexity of the task of classical guitar playing. 

First, he defined two categories of movement of the hand: moving ALO N G the fingerboard, 

hence horizontally, and moving ACROSS the fingerboard, hence vertically. He determined 

that since both motions have to be performed in the same amount of time, moving along the 

neck should be more penalized, since it requires hand repositioning, than moving across 

the neck that simply implies finger displacements. The difficulty between two fingering 
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positions i and j is therefore computed using the following formula: 

Difficulty(i,j) = ALONG + ACROSS (2.1) 

Where ALONG is computed by assigning a difficulty weight to each possible position 

and AC RD S S mainly by avoiding unnatural postures and by assigning higher weights to 

positions that do not contribute to maintain a close vertical span. Radicioni has established 

a table of the maximum allowed distances, expressed in frets, between each finger pair 

(Radicioni, 2005). Using this table he assigned difficulty weights to ALONG positions 

according to the following rules: 

• No weight is added if the fingering is inside the boundaries of the maximum span; 

• Increasing weight is added if the fingering is outside the maximum span boundaries 

due to the need of repositioning. 

comfortable span 

need of need of 
repositioning repositioning 

Figure 2.3 Biomechanical constraint: A maximum guitarist left-hand span 
model 

2.1.3 Computing the Minimum-Weight Path 

Once aIl possible fingering positions for each note have been determined and once weights 

have been assigned to each transition between notes, the problem has been transformed 

to a minimum-weight path search in a directed acyclic graph. By fragmenting the score 

in phrases, Radicioni's method first creates and resolves graphs for each phrase and then 

solves the fingering at the boundaries between phrases. As figure 2.4 displays, the graph 

has a layered structure where each note has at least four possible fingerings (with the 
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exception of notes played on open strings), i.e., one possible (string, fret) position on the 

neck played with any of the four fingers. This layered structure ensures that the system 

can resolve the minimum-weight path searching problem in linear time (O(n)) relative to 

the number of notes (n) and to a hidden linear complexity constant relative to the number 

of edges between each layer (256 in the worst case). 

E2 (mi) F2 (fa) A2 (la) 

Figure 2.4 A simple example of the graph generated for the sequence of 
notes E2-F2-A2 (weights are omitted on edges between F2 and A2 for clarity). 
The dash line represents the optimum path. 

2.1.4 Computing Chord Fingering 

The case of the fingering of chords is slightly different from the one of single note explained in 

the precedent paragraphs since it involves many fingering positions at a time. The solution 

to solve it is also different. Radicioni (Radicioni, 2005; Radicioni & Lombard.o, 2005b) 

and Truchet (2004) both demonstrated that the chord fingering problem could be solved 

using the constraint satisfaction problem theory (CSP). The constraint satisfaction problem 

assigns values to variables satisfying a set of constraints (or rules, to keep the same language 

as in the previous paragraphs). In this case, the variables are the individual notes that 

compose the chord, the values are aIl the possible triplets of (string, fret, finger) (up to 

16 per note) that can solve the note, and the constraints are the set of rules (biomechanical 

constraints in the case of Radicioni) used to determine the optimum fingering. In the case 

where many solutions satisfy the set of rules, Radicioni developed a comfort ranking to 
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choose the optimum solution. To solve the fingering problem in case of a succession of 

chords or of a mixed passage of one note melody and chords, chords are included in the 

search graph and are solve as a sub-problem using the CSP technique. 

2.1.5 Conclusion 

This section presented a pre-processing solution to the fingering problem. This solution 

is advantageous when the score is the only information available about a musical piece. 

This method searches an optimum fingering based on a pre-determined set of rules and 

therefore does not necessarily satisfy the musical intent of the original composer of the 

piece. According to Gilardino's (1975a, 1975b) comments on manually determining guitar 

left-hand fingering from score analysis, it is not possible to establish a set of rules that will 

satisfy all musical genres. This, therefore, implies that an a priori study of the piece could be 

necessary to determine which set of rules needs to be applied, assuming that such sets can be 

created. However, Radicioni's comparative results between a professional musician and the 

computerized solution were satisfying. The system has demonstrated sorne difficulties at 

the boundaries and also at places where the musician also hesitated between two solutions. 

This method is potentially useful in domains like automatic music performance, instrument 

physical modeling, and music theory but cannot be applied directly in live performances 

to control sound synthesis, sound effects, or accompaniment. It can have sorne utility in 

education (Wang & Li, 1997; Miura et al., 2004) but cannot be used to analyze the evolution 

of a beginner or to compare his fingering choice to that of a profession al. 

2.2 Realtime-Processing: MIDI Guitar and Guitar-shaped 

Controllers 

Realtime guitarist gestures have been used to control sound synthesis for approximately 

thirty years either by capturing these with devices added to traditional guitars or by using 

guitars-shaped controllers. In the 1970's, when the popularity and availability of keyboard 

synthesizers were growing, "it came to pass that guitar players would have the same per

formance potential as keyboard players" (ARP instruments advertisement eited by Verner 

(1995)). The desire to capture guitarist gestures in realtime to control sound effects and 

sound synthesis was born and is still an active research topie today. Commercial solutions 
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exist for the acquisition of the left-hand fingering gesture of the guitarist. These solutions 

solve the (string, fret) component of the problem. The most widely used solution is the 

pitch-to-voltage technology. Its popularity is due to its relatively low priee and its sim

ple setup. Other commercial solutions exist, for example, wired frets and ultrasonic pitch 

sensor scanning. These tend to be more accurate and to have shorter response time, but 

their high production cost make these hardly accessible to most musicians. Finally, recent 

research also proposes sorne solutions using advances in the sensor technology field. 

2.2.1 Pitch-to-Voltage Converter 

In 1976, the ARP Instruments Avatar analog monophonie synthesizer was the first com

mercial solution to use the guitar as a sound synthesis controller (Vintage Synth Explorer, 

2005). Left-hand guitarist gestures were captured from a traditional guitar with the use of 

a pitch-to-voltage converter. With the advent of the MIDI protocol in the 1980's, pitch-to

voltage converter has been renamed pitch-to-MIDI but uses the same principles: 

1. The strings' vibrations are captured via a hexaphonic pickup. 

2. Six electric signaIs (one for each string) are then sent to a converter that determines 

their frequencies (pitches). 

3. SignaIs are also analyzed to retrieve information about the velo city (amplitude). 

4. In the case of a MIDI instrument, these information are then converted to digital 

messages according to the MIDI proto col. 

Using this method it is possible to retrieve information about the (string, fret) component 

of the fingering problem. 

2.2.2 Other MIDI Solutions 

Although pitch-to-voltage is still in use and is the MIDI guitar industry bestseller, other 

technologies have also been used. Launch in 1984, the SynthAxe (Rojas, 2005), a guitar

like MIDI controller, is the oldest representative of the wired frets group. Today, StarrLabs 

(2006) pro duces the Ztars guitar-like controller series that are inspired by this technology. 

The princip le of this technology is that each fret is wired and divided in six regions. The 

contact of the string on the fret triggers the note. 
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Figure 2.5 A typical MIDI guitar setup 

Ultrasonic pit ch sensor scanning guitar-like controllers were produced in the late 1980's 

by Yamaha and Quantar. In this technology, high-frequency ultrasound signaIs are trans

mitted across the strings and the fingered fret position is determined by analysing the 

reflected wave (Verner, 1995). These two technologies address the (string, fret) compo

nent of the fingering problem only. 

2.2.3 Recent Research Solutions 

Recent advances in sensors technology have permitted the development of novel guitar

like or augmented guitar controllers, for example, the GXtar was presented in NIME06 

(Kessous, Castet, & Arfib, 2006). It is a guitar-like controller on which the fingerboard has 

been replaced by two FSRs (Force Sensing Resistor) capable of measuring the finger position 

and pressure. This instrument used two silent strings to guide the "guitarist" and help him 

reproduce traditionalleft-hand gestures. Right-hand gestures are produced using a three

dimensional joystick mounted on a slider, but a plectrum-like sensor has also been evaluated 

to extract right-hand gesture information from the "plucking" signal. This instrument is 

fretless and limited to two "strings" due to FSR dimensions but this is simply a technological 

limitation. Other sensor technologies are actually tested to create new augmented guitars 

or guitar-like controllers, for example InfoMus laboratory (University of Genoa) is working 



2 Fingering Recognition 16 

on an infrared solution to measure the distance between an infrared source mounted on the 

instrument and the fingered position (Camurri, personal communication, June 7, 2006). 

2.2.4 Conclusion 

This section presented several solutions to solve the fingering problem in realtime. AlI of 

these solutions are able to retrieve information about the (string, fret) component but 

none solves the complete (string, fret, finger) triplet of the fingering problem. MIDI gui

tar controllers using pitch-to-voltage converter suffer from several problems inherent to the 

technology. The pitch detection time varies from string to string since lower frequencies 

necessitate more periods to be identified. Each note also has to be played in a dean and 

detached (staccato) way in order to avoid glitches or false note triggers. Guitarists con

sequently have to adapt their natural playing style or to perform post-processing editing 

to get satisfying results with pitch-to-MIDI guitar controller (Glatt, 1999; Pollock, 1999, 

2000). Recent advances in artificial intelligence might bring solutions to these problems, 

for example Blue Chip Music Technology (n.d.) daims to have developed a neural net

work solution capable of determining the pitch even before the attack ends. Industrial 

guitar-like controllers seem to offer better solutions in terms of the accuracy, precision, and 

realtime response. However, they are unique instruments and musicians have to develop 

an appropriate playing style that only mimic that of the traditional guitar. Their high cost 

is also a limitation to their wide use. Infrared sensor technology could offer an interesting 

alternative to the pitch-to-MIDI solution but it will also only answer the (string, fret) 

component of the fingering problem, and would probably need to be combined with other 

techniques to determine when a string is played. At the moment of writing this thesis, this 

technology is only at the conceptual step and will be tested on the violin first (Camurri, 

personal communication, June 7, 2006). 

2.3 Post-Processing: Sound Analysis 

This last method is based on the analysis of sound recording of a guitar. It has been inspired 

by the observation of the timbre space ofthe guitar (Traube, Depalle, & Wanderley, 2003). 

The major point of this method is that comparison between the physical model of a guitar 

and the sonic parameters of a recording permits to determine sorne of the guitarist playing 

techniques. The main task is to identify the plucking point with the highest degree of 
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accuracy. Once a relative string length ratio has been determined for the plucking point, it 

is possible to compare it with ratios of a fixed plucking point with different string lengths 

and therefore find the fingering point (the point where the left hand of the guitarist short en 

the string). 

Number of frets 

Tuning 

Numberof strings 

! .. 

Calculation of peaks 
for an Ideal string and 
for dlffera1t values Dt 

plucldng point 

Search for ail 
possible stringlfret 

combinatJons 

Sèarchfor 
cIosest plucking 

point value 

Fingering 
point 

Figure 2.6 Block-diagram for the estimation of the plucking and fingering 
points reproduced with permission from ('fraube & Smith III, 2000) 

2.3.1 Finding Notes and Pitches 

The first step of this method consists in finding note beginnings. This is done by observing 

the energy of successive samples blocks and by detecting sections of the recording where 

the energy increased by a factor of 2. When the notes' attacks are found, stationary parts 

between two attacks are taken in order to determine the notes' pitches. To determine the 

fundamental frequency of notes, Fast Fourier Transforms (FFT) are performed on windows 

of the waveform taken at approximately 1/8th of the distance between two attacks. Pitches 

are determined by searching for a maximum in each spectrum. In case the maximum is 

not the first frequency of a spectrum, previous peaks are evaluated to determine if their 

height is significant enough to be fundamentals. This is done knowing that generally the 

fundamental of a guitar note is the first and highest peak of the spectrum. 
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2.3.2 Estimating the Relative Plucking Point 

In the first implementations of this method (Traube & Smith III, 2000, 2001), the next 

step was to generate spectra of an ideal string pluck at different positions for each detected 

pitch. These spectra were then compared to the real spectrum of each note. The spectra 

minimizing the error between the real data and the theoretical one were assumed to be a 

good approximation of the real notes and plucking points. This method has been refined 

in subsequent articles (Traube & Depalle, 2003; Traube et al., 2003; Traube, 2004). In 

its latest implementation it uses a log version of the auto correlation function, that the 

author named the log-correlation. The log-correlation of the theoretical model and the real 

data produced a first approximation of the (plucking point / string length) ratio that is 

then refined iteratively using a weighted least-squared estimation. These estimations are 

based on the fact that plucking a string created an effect similar to that of a comb filter 

by eliminating harmonies that have anode at the plucking position. This resemblance is 

exploited in many synthesis methods based on physical models of the guitar (Cuzzucoli 

& Lombardo, 1999; Laurson et al., 2001), explanations on its physical foundations can be 

found in The Science of Sound (Rossing, Moore, & Wheeler, 2002) and in Traube "The 

physics of Plucked String" doctoral thesis chapter (2004). Traube also provides detailed 

information on how the plucking effect can be reproduced with comb filter in her "The 

Plucking Effect as Comb Filtering" chapter. 
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Figure 2.7 Spectrum of a plucked string: (a) Theoretical model of a string 
pluck at 1/5 of its length (Rossing et al., 2002) reproduced with permission 
from (Traube, 2004). (b) Real spectrum of a string pluck at approximately 
1/5 of its length reproduced with permission from (Traube, 2004). 
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2.3.3 Determining the Fingering Point and the Absolute Plucking Point 

One of the problems encountered when trying to retrieve the fingering of a guitarist is that 

the same pitch can be produced with different fingerings (see figure 2.2). The choice of a 

particular fingering is infiuenced by multiple factors that are not strictly physical, therefore, 

an educated guess is not possible. A frequency table can be generated by knowing the 

number of strings and frets and by multiplying the tuning frequency by 2 F /12 (a semi

tone). Once the pitches are known, possible (string, fret) combinat ions are retrieved from 

the table. For each (string, fret) combination a relative (plucking point / string length) 

ratio is computed using a fixed plucking point and knowing that the vibrating string length 

is inversely proportional to the fundamental frequency. These (plucking point / global 

length) ratios are then compared with the one computed at the relative plucking point 

estimation step. The (plucking point, fingering point) combinat ions that minimize the 

error between the two ratios are assumed to represent the reality. 

Display of playable notes on the 6 strings of a gLitar (Wlth standard tuning) 

Figure 2.8 Frequency table based on the tuning, the number of strings and 
the number of frets reproduced with permission from (Traube & Smith III, 
2000) 

2.3.4 Conclusion 

This section has introduced a method to detect guitar fingering using sound recordings. 

The principal advantage of this method is that it could be used to retrieve a guitarist 

fingering when only sound recording of the piece are available. This method is efficient 

but its accuracy to detect fingering is dependent on the detection of the plucking point. 
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The plucking point detection algorithm has shown accuracy results in the range of one 

centimeter for notes played on open strings. Unfortunately, the results for fretted notes, 

the most important ones in the fingering problem, are not as good. In the worst case, the 

accuracy goes down to errors between 3.8 and 8.3 centimeters. These errors might be due to 

the friction of the string on the fret and to sympathetic resonances with open strings. These 

two factors introduce distortions that make the analysis more difficult and less accurate. 

Moreover, this method can only be applied if one note is played at the time. AIso, it 

cannot be directly applied to electric guitar because in that case, the sound is recorded 

by pick-ups that introduce another comb-filter effect. In fact, since pick-ups record the 

sound at a particular point, it will miss aH the harmonics that have anode at this point. 

Since the combination of pick-ups is not always the same depending on the guitar this 

might introduce complications and reduce the principal advantage of this method. This 

method therefore needs further development to refine the results with fretted notes and to 

be applied on any guitar and in real playing situations where multiple notes are played at 

the time. 

2.4 An Application Example: A Realtime Guitar Performance 

Relying on Computer Vision 

This section presents an example of the use of computer vision to retrieve gestural infor

mation from a guitarist's live performance. This computer vision system was developed 

at InfoMus Laboratory, University of Genova and has been used by the composer Roberto 

Doati for a piece requested by the guitarist Elena Casoli (Doati, 2006). The live electronic 

version of "L'apparizione di tre rughe" has been performed in concert in 2004. 

2.4.1 Finger-Localization Setting 

The setting is simple, the musician is sitting in front of a camera and a microphone mounted 

on a tripod. The camera is focused on the guitar neck region. Three of the musician's 

fingers are painted, the index is green, the middle finger is red, and the ring finger is 

blue. An EyesWeb color localization patch is used to detect the painted left-hand finger 

positions on the guitar neck. From this information, 15 different parameters are extracted 

and are translated into MIDI messages that are sent to MAX/MSP patches that apply live 
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digital effects to the captured sounds. Different patches and mappings are used at different 

moments of the piece. 
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Figure 2.9 EyesWeb detecting the colored fingers of Roberto Doati repro
duced with permission from (Doati, 2006) 

2.4.2 Conclusion 

This method does not retrieve precise finger positions nor relate these to exact (string, fret) 

coordinates. The system only have an idea of the position of the whole finger in the camera 

view window. The musician is required to paint is fingers and should restrain his movements 

in order to keep the guitar neck stable inside the camera view. However, Doati comments 

that "the results in terms of articulation are much more "natural" than with a normal 

sliders MIDI controller (Doati, 2006, p.I8)." This example demonstrates that there is a 

desire for controllers that use the natural guitarists' skills and gestures to control parameters 

external to the guitar. This also shows that computer vision might offer solutions for these 

kind of controllers. 
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The advances in technology and the widespread usage of comput ers in almost every field 

of human activity call for new interaction methods between hum ans and machines. The 

traditional keyboard and mouse combinat ion has proved its usefulness but also, and in a 

more extensive way, its weaknesses and limitations. In order to interact in an efficient and 

expressive way with the computer, humans need to be able to communicate with machines 

in a manner more similar to human-human communication (Picard, 1997). 

In fact, throughout their evolution, human beings have used their hands, alone or with 

the support of other means and senses, to communicate with others, to reeeive feedback 

from the environment, and to manipulate things. It therefore seems important that tech

nology makes it possible to interact with machines using sorne of these traditional skills. 

The human-computer interaction (HCI) community has invented various tools to exploit 

hum an gesture, the first attempts resulting in mechanical deviees. Deviees such as data 

gloves can prove especially interesting and useful in certain specific applications but have 

the disadvantage of often being onerous, complex to use, and somewhat obtrusive. 

The use of computer vision can consequently be a possible alternative. Reeent advanees 

in computer vision techniques and the availability of fast computing have made the realtime 

requirements for gesture recognition in HCI feasible. Consequently, extensive research has 

been done in the field of computer vision to recognize hand postures and static gestures, and 

also, more reeently, to interpret the dynamic meaning of gesture (Kohler, n.d.; Pavlovic, 
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Sharma, & Huang, 1997). Computer vision systems are less intrusive and impose lower 

constraints on the user since they use video cameras to capture movements and rely on 

software applications to perform the analysis. 

This chapter presents a model of gesture processing using computer vision. It is mostly 

based on Pavlovic et al. (1997) review of the field. The first section discusses the difficulty 

to come to a single definition of gesture and proposes various vocabulary words that will 

be used throughout the rest of this thesis. The subsequent sections suggest a methodology 

to recognize gesture based on three steps: 

• Gesture modeling; 

• Gesture analysis; 

• Gesture recognition. 

The modeling step implies the representation of gesture in time and in space. The analysis 

step is concerned with the algorithmic mechanisms necessary to transform the captured 

images into data corresponding to the chosen model. The recognition step confronts the 

data with the model to associate these to a gesture. Finally, the conclusion section will 

explain how this methodology can be used in the context of the guitar fingering problem. 

3.1 Gestures Definition 

Although human gesture is widely studied in various fields, it seems impossible to find 

a single and simple definition of it (Cadoz & Wanderley, 2000). However, a common 

denominator relates it to human physical behavior. In all cases, gesture is associated with 

the idea of motion of the body or of a limb. What is not agreed upon is whether this motion 

should convey information or whether manipulation and expressive movements can be 

considered gestures. In the domain of HCI, where the aim is to control the computer using 

gestures, it is desirable to use body and limb movements that mimic both manipulation 

(also called practical gestures (Kendon, 1986)) and communication gestures. 

The music technology community tends to define gesture as the physical representation 

of the communication between the musician and his instrument. It is the mean by which 

the musician's effort and expressiveness are transmitted to the instrument and converted to 

mechanical energy. Part of gesture is essential to sound production while the rest is related 

to feeling and emotion. Gesture can therefore be divided into two categories: effective and 
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accompanist (Delalande, 1988). Effective gesture is necessary for sound production. It 

is the action performed by the musician to pro duce the mechanical energy that permits 

his instrument to generate sound. On the other hand, accompanist gesture, which is also 

sometimes called expressive or ancillary gesture, is used by the musician to express the 

emotive content of the piece. Even if this second component does not directly affect the 

sound production, experiments in which musicians limited their expressive movements have 

tended to prove that accompanist gesture also contains meaningful information (Wanderley, 

Vines, Middleton, McKay, & Hatch, 2005). A complete computer system for music should 

consequently consider both of these types of gestures. 

From an Hel perspective, Pavlovic et al. (1997) define gesture as a motion originating 

from a gesturer's mental concept and perceived by an observer as a stream of visual images. 

These images are then interpreted by the observer based on his knowledge of their commu

nicative and expressive content. In the case where the observer is a computer, the gesture 

is captured by one or more cameras. The image stream is analyzed with respect of the 

gesture model parameter space during a defined time interval. The extracted parameters 

are then compared using a grammar and a class of known gestures in the recognition phase. 

FinaIly, the computer converts the recognized gesture into commands or data required to 

control an application. 

3.2 Gesture Modeling 

As there is no absolute definition of gesture, there is no general model that solves aIl the 

human-computer interaction gestural problems. However, the following sections present 

one methodology that can be applied to recognize gesture using computer vision. As figure 

3.1 illustrates, gesture from the gesturer is captured by a camera. The captured images are 

analyzed to localize the region of the image and the moment in the sequence of images where 

the gesture takes place. The gesture is segmented in time according to the temporal model 

and in space to create the region of interest (ROI). Parameters are then extracted from the 

segmented image according to the chosen spatial model. Finally, depending on the type of 

model, gesture is recognized either by comparing these parameters with a knowledge-base 

of previously learned gestures or with an alphabet and a grammar establishing the set of 

possible gestures and sequences of gestures. 
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Gesture Modeling 

Gesture Recognition 
Temporal Modl!'ling _ Spatial Modeling 

Gesture Analysis 
-----------.. 

Parameter Estimation 

Il 
Alphabet and Gramnar 

Figure 3.1 A methodology for gesture processing using computer vision 

3.2.1 Temporal Modeling of Gestures 

In 1997, Pavlovic et al. stated that although gestures are dynamic actions with temporal 

characteristics rich in meaning and information, most of the past researches focused on the 

recognition of static gestures or postures. This was mostly due to the lack of established 

software tools to analyze dynamic gestures and to their high computational cost. 

In order to analyze the dynamic component of gesture it is important to understand its 

mechanism. A good understanding of the different phases of gesture is also essential for its 

temporal segmentation. Gestures can be divided in three phases: 

• Preparation; 

• Nucleus; 

• Retraction. 

The preparation phase is the moment where the movement is initialized from a resting 

position. The nucleus is the significant part of a gesture; it is the part we want to analyze to 

recover the meaning of the observed movement. The retraction phase is the moment where 

the limbs implied in the gesture return to a rest position or enter a new preparation phase. 

Preparation and retraction phases are normally characterized by rapid motions; during 

the nucleus phase the motions are generally slower. Due to the complexity of gestural 

interpretation, these phases are not always easily detectable. 
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3.2.2 Spatial Modeling of Gestures 

Pavlovic et al. (1997) note two major categories of spatial model of gestures. In a first 

approach, gestures are inferred directly from the observed images. This approach is called 

appearance-based. The second approach is named model-based and implies that gestures 

are inferred from the parameters of models of motion and postures. 

The principles of appearance-based models are simple, they use the parameters derived 

from the images captured by the cameras and compare these to parameters of a set of 

predefined template gestures. This class of parameters is called image property parame

ters. Image property parameters may be derived using many techniques including but not 

restricted to: binary silhouettes, edges, contours, signatures, histograms, image moments 

and eigenvectors. Templates can be obtained by averaging image property parameters of 

a group of training data representing each of the desired gestures. This approach can also 

be used for dynamic recognition; in this case the trajectory of the parameters is used. A 

subgroup of these models uses fingertip positions as parameters with the assumption that 

fingertip positions are sufficient to describe uniquely a finite group of gestures (Pavlovic et 

al., 1997). 

The model-based approach can itself be divided in two main groups: volumetrie models 

and skeletal models. Volumetrie models are three-dimensional representations of the body 

or limbs with varying degree of realism ranging from fully articulated 3-dimensitional sur

faces to cylindrical models with reduced number of joint and restricted degree of freedom. 

A high degree of realism will have a dramatic impact on computation time, and is not 

necessarily required to recognize gesture. Therefore, although these complex 3D surfaces 

are really useful in computer animation where realtime output is not always a requirement, 

simplified versions are often sufficient in the field of gesture analysis and recognition. The 

volumetric models approach is also named analysis-by-synthesis tracking and recognition. 

!ts underlining concept is to analyse gestures by synthesizing 3D models of the body or 

limbs and varying its parameters in order to obtain a match between the model and the 

observed data. Skeletal models use a similar concept but with a toothpick representation 

of the body. Depending on the application, a reduced number of joints and segments are 

chosen with established restrictions on the segments possible angles and degrees of freedom 

(Pavlovic et al., 1997). 
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3.3 Gesture Analysis 

Once a model parameter space has been chosen, the next task is to perform the necessary 

steps to extract the required parameters from the captured images. The analysis pro cess is 

performed in two steps. The first step is to extract the images' features. The second is to 

compute these features so that they correspond to the chosen model. The extraction step 

is itself dual and consists of localizing the region of the image where the gestures take place 

and segmenting the features that need to be extracted from the rest of the image. The 

computation step simply consists of transforming the data into a format corresponding to 

the model parameter space. 

3.3.1 Feature Extraction 

3.3.1.1 Localization 

The localization step consists in finding the, region of interest, therefore, the region of the 

image where the gestures take place. Traditionally, two types of localization methods have 

been used to perform this task: 

• Color detection; 

• Motion detection. 

Color detection relies on the identification of human skin in complex background images 

or on the use of specifie color markers or uniform background color. The first case would be 

ideal since the use of color markers or uniform background color limits the generality of the 

applications and impose restrictions on the users and environment setup. U nfortunately, 

color identification is sensitive to illumination change and human skin color range is large 

and often similar to other environment elements color (wood for example). The use of the 

hue-saturation space instead of the standard RGB color space provides a solution since it 

is less sensitive to lighting condition but is still error prone. Sorne assumptions or educated 

guesses on the size and potential locations of the searched regions, for example, can be 

used to enhance the use of color detection. In many cases color detection algorithms are 

computationally intensive and, therefore, hard to perform in realtime. 

Motion detection is based on the assumption that the background, gesturer and cameras 

are stable and, most of the time, that only one hand gesture is performed, therefore, the 

analyzed gesture is the only changing component in the image sequence. It uses background 
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subtraction algorithms between a reference image and the actual image to determine the 

regions of the image where motion is happening. Motion detection is sensitive to phenomena 

like shadows but its major drawback resides in its assumptions. These assumptions are true 

in a vast majority of cases but there exist situations where they are constraining (Pavlovic 

et al., 1997). 

Detection of the gesture is a major issue in gesture recognition systems. Since both of 

the common methods present sorne limitations, active research is done in this field. Two 

lines of research are hybrid systems and prediction systems. Hybrid systems rely on a 

combinat ion of detection methods and prediction systems try to estimate future locations 

of the regions of inter est based on the model dynamics and the previously known locations. 

3.3.1.2 Segmentation 

When the region of interest has been localized, the next task is to prepare the image so that 

parameters corresponding to the parameter space model can be extracted. Segmentation 

of the body or limb from the background is generally the main and more complex part 

of the process. Background subtraction algorithms use similar mechanisms as gesture 

localization. The body limb doing the gesture can be segmented from the background by 

using color segmentation or motion segmentation. As it was the case in the localization 

phase, color segmentation can be performed based on skin color distribution or with the help 

of color markers. Background subtraction algorithms relying on motion use difference of 

pixels between the current image and a reference image and will therefore only keep pixels 

that have changed more than a given threshold. Background segmentation algorithms 

suffer from the same drawbacks than their localization equivalent, namely sensitivity to 

illumination change and shadow, and strictness and limitation imposed by the necessary 

assumptions. 

Another common parameter used in 2D and 3D applications is the fingertip location. 

Fingertips can be found easily with the help of color markers and a color segmentation al

gorithm. More complex but less constraining techniques imply the use of pattern mat ching 

where the template can be an image of a fingertip or a fingertip generic model. Sorne tech

niques also rely on the characteristic properties of the fingertips in the image, for example, 

the specific curvature of the fingertip can be used for feature detection. However, finger

tips are susceptible to occlusion and, therefore, cannot always be detected. In these cases, 

solutions are to use multiple cameras or to develop estimation techniques to determine the 
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position of occluded fingers. 

3.3.2 Parameter Estimation 

Parameter estimation is the last step of the analysis process. It is the step where the 

detected image is transformed into the chosen model format. In the case of appearance

based approach this will correspond to the format required to compare the actual data with 

that of the knowledge-base. It can be in the form of pixel information like in the case of 

binary images, contours, and edges, or in a numerical form like in the case of signatures, 

eigenvectors, or moments. In the case of model-based approach, the information will be in 

the form of coordinates of points and angles of segments. This information will be applied 

to the model to recreate the gesture and to estimate missing parameters, for example, 

occluded fingertips. Joints between each segments and points will often be found using 

inverse kinematics. 

3.4 Gesture Recognition 

Recognition of the gesture is the final phase of a complete gesture recognition system. It is 

the phase in which the data analyzed in the previous stage is recognized as a given gesture. 

Pavlovic et al. (1997) identified two tasks associated with the recognition process: 

• Optimal partitioning of the parameter space; 

• Implementation of the recognition procedure. 

Optimal partitioning of the parameter space deals with data quantization. In the con

text of appearance-based models, high-resolution image models require a lot of st orage 

space and make the comparison pro cess slower. On the other hand, too low-resolution im

age models may lose details important for recognition. A compromise between detaillevel, 

storage space and pro cess speed must therefore be done. The choice of the appropriate 

quantization can only be done through testing of the different possibilities. In the case 

of model-based and in sorne appearance-based models that rely on parameter comparison 

instead of image comparison, a choice must be made on the number of parameters. Param

et ers must be chosen to help with the recognition pro cess and to discriminate the different 

classes of gesture. In the case where dynamic gesture is considered, similar choices have 

to be made to quantize time. Furthermore, parameters should be chosen to be invariant 
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to certain conditions like rotation, translation, and scale in the case of spatial parameters 

and time instance and time scale in the case of temporal parameters. 

Implementation of the recognition procedure can also be seen as an elimination process. 

In fact, it is the step at which the recognized gesture is compared to a set of plausible 

gestures and is accepted or rejected. This is particularly important in the case of a sequence 

of gestures where a gestures do not make sense after another one. In the case of static 

gestures it is useful to reject impossible hand shapes, angles or finger positions, for example. 

In computing theory, the finite set of plausible gestures would be called the alphabet 

and a sequence of gestures would be called a string. The set of rules that are used to 

determined plausible sequences of gestures is called a grammar (Sipser, 1997). Certain 

systems concentrate only on recognizing the alphabet or string, while more sophisticated 

ones also consider a grammar. Once again, in this case, the computational complexity of 

the recognition procedure is important. Compromises must be done between the model 

complexity, the richness of the gesture alphabet and grammar, and the computation time. 

That is why researchers concentrate on specific tasks where it is possible to determine a 

finite alphabet and a grammar and not on a general model of all the possible hum an

computer interactions. 

3.5 Conclusion 

This chapter presented vocabulary words and a methodology to solve general fingering 

problems. In the subsequent chapters, this methodology will be applied to the guitar fin

gering problem, first, during preliminary analyses that are presented in chapter 4 and then 

in a prototype presented in chapter 6. Guitarist left-hand fingering gestures are instrumen

tal gestures and can be categorized as effective manipulative gestures (Cadoz would further 

categorized these as modification instrumental gesture (Cadoz & Wanderley, 2000)). The 

fingering gesture recognition pro cess will follow the same step as the general gesture recog

nition process. A model will need to be set for the temporal segmentation of the gesture 

in phases (preparation, nucleus, and retraction) and for the spatial representation of the 

gesture (Hu moments in the preliminary analyses, (string, fret, finger) coordinates in the 

prototype). The gesture analysis will also follow the same pro cess of localization of the ges

ture with the determination of a region on the fretboard around the guitarist left hand and 

of segmentation of the gesture in time and space. The resulting isolated gesture will then 
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be converted according to the chosen model in order to send the appropriate parameters to 

the gesture recognition module. The recognition pro cess will be based on a knowledge-base 

of pre-processed chord images in the case of the preliminary analyses and on an alphabet 

of triplets (string, fret, finger) in the case of the prototype. 
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This section presents the author's first attempt to solve the guitar fingering problem using 

computer vision. It is presented as a preliminary study on the use of computer vision to 

retrieve and analyze guitarist gesture and more precisely guitarist fingering. It is based on 

already available blocks of the EyesWeb software platform (http://VIWTiI . eyesweb. org/) 

and its aim was to explore the potential and limitation of these existing resourees. Sinee 

the system deals with visual input, one important aspect to consider is what and when 

it has to observe. It may seem simple for humans to focus on the important information 

from the observation of someone playing guitar, but it is not obvious for a computer. As 

figure 4.1 illustrates, many types of information can be extracted from the visual image of 

a guitarist. Consequently, the first thing to do is to find the more appropriate viewpoint for 

the camera. Then, the region of interest in the image has to be identified. When this is done, 

the algorithm must know when to look, i.e., to distinguish between stable and transit ory 

parts of the playing proeess. Finally, the application has to compare the information it 

reeeives against the analyzed information stored in its knowledge-base during the training 

phase. The information must therefore be converted to a format understandable by the 

algorithm. 
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4.1 Viewpoint Choice 

The choice of a viewpoint is a preliminary step and does not involve the computer directly. 

This step is based on the hypothesis that the computer will be able to see at least what the 

human eyes can see, i.e., it is based on human observations of the images captured by the 

camera. The aim is to find a viewpoint that allows the retrieval of the desired information 

with the desired degree of accuracy and precision. As it will be shown, these two objectives 

are confiicting. Accuracy and precision necessitate a close viewpoint focusing on one point 

of interest, therefore, losing complementary information. 

4.1.1 Global View 

As it can be observed in figure 4.1 (a), the global view is ideal for its richness in gestural 

information. This view allows to see the overall posture of the guitarist and also the 

action of both hands on the guitar neck and near the sound hole. This view is also rich 

in information about the expressive content since the face can be observed. Unfortunately, 

using this view it is impossible to obtain a detailed image of the hands (e.g., fingering or 

plucking information). To solve the fingering problem, a close-up on the neck region is 

necessary. 

4.1.2 Front View 

By focusing on the left hand as seen in figure 4.1(b), it is possible to obtain a more detailed 

image of the neck. Of course, using this view, right hand, postural and facial gesture 

information are lost. On the other side, this view provides a clear vision of the fingers in 

most of the situations, although sorne occlusion may happen with specifie finger positions. 

Frets and strings are also visible and consequently could be detected to help with the 

estimation of the finger position on the neck. However, a drawback of this view is that it 

is not possible to visually know if a string is pressed or not. 

4.1.3 Top View 

Figure 4.1(c) presents a different perspective on the region observed with the front view. 

This view presents characteristics similar to the front view, namely a detailed view of the 

fingers, the possibility to detect the strings and frets and the potential occurrence of the 
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"'-:. 

(a) Global view with focus on important parts 

(b) Front view of the left (c) Top view of the left 
hand hand 

Figure 4.1 Three different views of a guitarist playing captured from a 
camera on a tripod placed in front of the musician: (a) Global view with focus 
on different important zones for gesture analysis, namelly facial expression and 
front view of the left and right hand. (b) Front view of the left hand. (c) Top 
view of the left hand. 
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finger occlusion problem. Moreover, this view permits to observe the fingers' proximity 

to the string; it may therefore be possible to know if the string is pressed or not by the 

guitarist. Another potential interest of this view is that it is close to the view the musician 

has of the neck when playing. This may or may not have influence in the computer system 

but it could be interesting, perhaps, in a system designed for educational purposes. 

4.2 Knowledge-Base Creation 

In this prototype, the fingering is determined by the evaluation of the global shape of the 

hand. The system is therefore appearance-based and need to compare the hand shape 

image of a musician playing chords against previously processed hand shape images of the 

same chords. To test the efficiency of this technique applied to the guitar fingering problem 

it is necessary to build a knowledge-base with a small group of selected chords. As seen in 

figure 4.2, eleven chords grouped in six sets were selected to test the system. The chosen 

chords are of two types: 

• Chords with distinct fingering 

• Chords with similar fingering 

Distinct chords (set 4: G, set 5: B7 and set 6: G7 ID) were chosen to determine the 

range of hand shapes the system can distinguish. Similar chords (set 2: A and Dm, set 

3: C and G7, and set 1: D7, E, Em and Am) were chosen to test the complexity of detail 

level in the hand shape the system can achieve. The proximity factor used to determine 

the similarity is the visual shape of the hand as appearing to the human eyes only and not 

the tablature or any other musical characteristic. 

During the training period of the system, a guitarist was asked to play separately each 

chord twice. One frame of the stable part of each chord was extracted by manual inspection 

of the video image. These images were then treated following the same procedure the system 

uses to treat the input images, namely manual selection of the region of interest, threshold 

of the grayscale image, edge detection of the filtered image, and computation of the edge 

image Hu moments (Hu, 1962) (figure 4.3 lines 2 and 4). Information about the hand 

shape is stored in a knowledge-base in the form of a vector of Hu moments. During the 

recognition phase, this knowledge-base will be consulted by the system to identify chords. 
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4.3 Algorithm Design 

A prototype of the desired system was developed using the EyesWeb platform. The main 

requirements for the system were: 

• To pro cess a video signal (live or defered) in realtime; 

• To capture the video image of the guitarist playing from a camera on a tripod placed 

in front of the guitarist; 

• To create a reproducible system. In other words, another guitarist using a different 

guitar and a different camera with a similar setup (camera-to-guitarist distance and 

camera angle and viewpoint) should be able to use the system with similar recognition 

level. 

From the video signal, the system has to recognize chords that it learned during the 

training session. The system has to be able to extract hand shape representations of chords 

and compare these with previously analyzed ones stored in a knowledge-base. As shown 

in figure 4.6, to perform the analysis, the system has to focus on the hand region in the 

image and create a shape using Canny edges detection algorithm (Canny, 1986). These 

edge images then had to be analyzed by computing their Hu moments (spatial modeling, 

figure 4.4). The system has to distinguish between stable and transit ory parts of chords 

(nucleus versus preparation / retraction) in order to analyze stable parts only (temporal 

modeling, figure 4.4). Finally, as shown in figure 4.7, the algorithm has to compare Hu 

moments of the stable part of chords with the one analyzed during the training session. 

Figure 4.3 summarizes the algorithm. 

4.3.1 Gesture Modeling 

4.3.1.1 Temporal Modeling 

In this system, temporal modeling is necessary to ensure the stability of the gesture recog

nition process. Assuming that the three dynamic phases of gesture: preparation, nucleus, 

and transition, are present in the chord playing process, the aim of the temporal segmenta

tion is to prevent the system from analyzing and recognizing chords during the transitory 

phases of preparation and retraction. The movement analysis is done by computing pixels 

difference between frames of the video recording of a guitarist playing a sequence of chords 
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Figure 4.3 Preliminary chord recognition algorithm. Note: For better print
out results, black and white pixels are inverted in the edge image (line 4) 
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Figure 4.4 Spatial and temporal modeling 

to generate a motion curve. The result for a sequence of sixteen chords is displayed in 

figure 4.5 where the number of pixels that have changed between each frame of the video 

recording can be observed. In the case studied with this prototype, namely plucked chords, 

the characteristic low motion of the nucleus can be observed clearly. Consequently, stable 

parts can be segmented from transitory parts by the application of a threshold. Temporal 

segmentation is performed early in the algorithm to prevent the unnecessary execution of 

the subsequent analysis and recognition step. The temporal segmentation step can be seen 

on line 3 of figure 4.3. Line 4 will be executed only when the motion curve value is lower 

than the threshold value. As a result, only stable parts of the video are analyzed and tested 

for recognition. 

4.3.1.2 Spatial Modeling 

Spatial modeling is the choice of representation of the image data that will be input to the 

recognition module of the system. In this prototype, the recognition pro cess is performed 

using the Hu moments representation of the chords. This representation has been chosen 

considering many factors, namely: 

• Storage space: 

- Considering that the amount of different chords that can be played on a guitar is 

large, the constitution of a complete knowledge-base based on the Hu moments 

vector of the image (a numerical sequence of seven floating-point numbers) is 

more economic than a knowledge-base that would rely on the pixel representation 
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Figure 4.5 Motion curve of the guitarist left-hand playing the sixteen chords 
sequence 
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of the chords. 

• Computation time: 

- The computation of the difference between two Hu moments vectors is faster 

than the computation of the correlation between two images (computation time 

is important to satisfy the real time requirement) . 

• Invariance to size, rotation, and translation: 

- The Hu moments vector is invariant to size, rotation, and translation, these 

three characteristics are important to satisfy the reproducibility requirement of 

the system: 

* Invariance to size, rotation, and translation is assumed to allow the system 

to be tolerant to small variations of the camera angle and position and 

musician to camera distance, and to work with different sizes of guitars and 

hands. 
* Invariance to rotation and translation are also important since the camera 

is not moving together with the guitar neck, therefore, due to the musician 

ancillary movements, the neck of the guitar does not appear at the exact 

same place at different moments of the playing pro cess. However, invari

ance to translation might cause problems for chords C and G7 and rotation 

invariance might cause problems for chords D7 and E because to human 

eyes they look like a horizontal translation and a clockwise rotation of the 

second chord with respect to the first one (figure 4.2) . 

4.3.2 Gesture Analysis 

4.3.2.1 Feature Extraction 

Localization 

The localization phase consists on determining the gesture region, usually called the region 

of interest (ROI). In this prototype, the ROI has been determined by manual inspection 

of the video sequence. Since the guitarist and camera position are relatively stable in the 

video sequence, a fixed rectangle mask is applied around the region where the hand appears 

(figure 4.3, li ne 1, step 2). The-dimensions of the rectangle are chosen to minimize the noise 
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Figure 4.6 Analysis of the chord using Hu moments on the edges image. 
Note: For better printout results, black and white pixels are inverted in the 
edge image 

created by surrounding objects and to maximize the preservation of the integrity of the 

hand shape (results of the localization step during the training phase can be observed in 

figure 4.2). 

Segmentation 

Once the ROI has been defined, the gesture must be "extracted" from the image. In this 

prototype, the segmentation was simplified by recording the guitarist on a constant, light 

background. This way, the segmentation could be done by applying a threshold on the 

video image and by filtering the noise using a median filter (figure 4.3, line 2). 

4.3.2.2 Parameter Estimation 

The last step of the analysis pro cess consists in converting the segmented input gestures 

into the appropriated format for the recognition process. In this case, the chosen parameter 

space is a seven number vector obtained by applying the Hu moments on an edge image of 

the chord (figure 4.4). This method is inspired by the work of Paschalakis and Lee (1999) 

where Hu moments are used to recognize different objects from the silhouette image of their 

shape. The conversion to edge image is done using the Canny edge detection algorithm 

(Canny, 1986) on the segmented image. This process and the conversion to Hu moments 

vector can be seen on the two first steps of line 4 of figure 4.3. 
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4.3.3 Gesture Recognition 

As it can be seen in figure 4.7, the recognition step is simple and consists of a comparison 

between the vector obtained during the analysis step and the vectors obtained during the 

system training. A difference between the vector of the analyzed image and all the vectors 

in the knowledge-base is computed. The system chooses the closest vector as the more 

probable chord. Preliminary experimental results suggest that the system should confirm 

the recognition and consequently output a result only if the confidence level for that vector 

proximity is higher than seventy percent. Furthermore, results also suggest that the system 

is more stable if the chords are recognized in at least twenty consecutive frames. With a 

frame rate of thirty frames per second this implies a minimum delay of two-thirds of a second 

to recognize a chord; it is important to note, however, that this delay does not include the 

computation time of the vectors difference that grow up linearly with the number of chords 

in the knowledge-base. 

Recognition 

Figure 4.7 Chord recognition by comparison between the Hu moments of 
the image and Hu moments of previously analyzed images 

4.4 Results 

Figure 4.8 presents the output of the system. Played chords are indicated on the x-axis. 

The chords are the sixteen first chords of La complainte du phoque en Alaska (Rivard, 1991) 

played with a guitar pick using the following pattern: base, down pluck, down pluck. On 

figure 4.8, it can be observed that there is more "space" between the first C and the other 

chords. That is because the first C is played for two bars and all the subsequent chords 

are played for one bar as indicated in the score. The y-axis is the index of the chords in 
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the knowledge-base. The columns are the indexes output by the recognition system. The 

width of the columns indicates the duration of time a chord is identified. Consequently, the 

output is zero during transition phases and when no chord could be identified. The correctly 

recognized chords are circled and the ones that were confused with another chord in their 

similarity set are squared. The test was performed five minutes after the training with 

the same musician and the same camera setting. Even though this is an optimal situation 

the recognition level was low. During the sixteen chords playing test, a correct recognition 

happened four times and of these four recognized chords, three were also recognized at 

places where they were not played. The number of recognized chords is augmented if the 

recognition confidence level and the number of consecutive recognitions are lowered but at 

the price of introducing multiple recognitions of a unique chord. This phenomenon can 

be observed twice in figure 4.8: with the first C where the chord is wrongly recognized as 

G7 ID twice, and with the last C where the chord is recognized twice as G a~d once as G7. 

If the confidence level and number of consecutive recognitions are augmented, the number 

of recognized chord,s is reduced. The seventy percent confidence level and the recognitions 

in twenty consecutive frames is consequently the best setting for that test. 

Another important aspect of the results is that the recognition errors are not as initially 

expected. Confusion with a chord of the same similarity set happened only twice, while 

confusion with chords of random sets happened six times. This implies that the Hu mo

ments algorithm do es not categorized the hand shapes as expected by a human analyzer. 

Consequently, this implies that it may not be an appropriate classification method for that 

kind of task. 

4.5 Conclusion 

These preliminary analyses presented an attempt to use the global shape of the left hand of 

a guitarist to recognize the chords he is playing. Different camera views were evaluated and 

the top view (figure 4.1 (c)) was retained for its interesting characteristics with respect to the 

problem, namely a detailed view of the fingers, the possibility to detect the strings and frets, 

and the possibility to observe the finger-string proximity. The hand was segmented from 

the rest of the image, first by the manual selection of the region of interest, a rectangular 

region around the hand (figure 4.3, line 1, step 2), then by applying the Canny edge 

detection algorithm on the threshold image of that region (figure 4.3 and figure 4.6). Time 
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segmentation was also applied in order to evaluate only stable images of chords. In other 

words the transitory phases of preparation and retraction were eliminated and only the 

nucleus phase was evaluated (figure 4.4). The images obtained after that pro cess were 

converted to vectors by applying the Hu moments algorithm (figure 4.4). They were then 

compared to previously learned chords in the knowledge-base (figure 4.7). A chord was 

recognized when a chord of the knowledge-base matched it with a sufficiently high proximity 

factor. 

Preliminary tests were performed with a knowledge-base of eleven chords learned five 

minutes before the test with the same setting of guitar, camera, and musician. Although 

this is an optimum evaluation scheme, the system succeeded to recognize chords in only 

twenty-five percent of the cases. This is an extremely low recognition rate but these pre

liminary analyses permitted to identify sorne problems in the assumption of the system: 

1. The Hu moments do not seem to categorize the hand shapes as expected. 

2. Using an appearance-based method relying on a knowledge-base recognition mecha

nism limits the system to previously learned material. 

3. Using the global shape of the hand limits the system to the recognition of chords. 

4. Recognition time grows with the knowledge-base size. 

4.5.1 Problems Related to the Choice of the Hu Moments Vector 

Representation 

Prior to the test, the chords were divided in different similarity sets, chords from the 

same set, therefore with similar visual shape were expected to be confused by the system. 

However, test results show that it was not the case. The system confused chords with 

others of apparently random sets. This might be due to many reasons including: 

• A wrong shape representation (Canny edge image). Canny was chosen in this ex

periment in order to keep information on both the guitar neck and the hand, but 

Paschalakis and Lee (1999) used silhouette shapes. It is possible that the Hu mo

ments work better with silhouette shapes than with edge shapes . 

• A wrong vector representation (Hu moments). As explained previously, the Hu mo

ments are invariable to size, rotation, and translation, although it was expected to 

be an advantage, it is possible that this also has a negative impact on the vector 

representation of the chords. 
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• An under estimation of the impact of ancillary gestures and remaining background 

elements. 

Consequently, potential solutions for the representation problem include: 

• Use another shape representation, for example silhouette; 

• Use another vector representation, for example image geometric moments or image 

eigenvectors; 

• Store vector representation of more than one image for each chord, therefore account

.ing for rotation or translation of the neck position in the image; 

• Ameliorate the segmentation of the gesture from other elements; 

• Limit the impact of anciUary gestures by affixing the camera to the neck. 

4.5.2 Problems Related to the Choice of an Appearance-based Method 

Relying on a Knowledge-Base Recognition Mechanism 

The three last problems are aU related with the choice of an appearanee-based model to 

represent the gesture. During the recognition proeess, appearance-based models need to 

compare an actual representation of an image with previously observed representation of 

similar images stored in a knowledge-base. In this case, the chosen image representation 

was the Hu moments of the edge image of the hand on the guitar neck. This scheme implies 

that for a chord to be recognized, at least one Hu moments vector representing it should 

be in the knowledge-base. Consequently, the more chords the system can recognized the 

larger the knowledge-b8:Se has to be and the longer the recognition proeess will take sinee 

a differenee of vectors has to be computed for each vector present in the knowledge-base. 

In addition, by considering the global shape of the hand, the system is limited to the 

recognition of chords sinee it cannot consider the individual actions of each finger of the 

left hand. Solution for these three problems include: 

• Using another recognition mechanism, for example neural networks or Hidden Markov 

Models (HMM); 

• Using another modeling method, for example fingertips-based models or three dimen

sional models; 
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4.5.3 Prototype Specifications 

In conclusion, even if the preliminary analyses were not successful in retrieving fingering 

information, they provided insights about how to visually acquire guitar fingering informa

tion. Therefore, the main specifications for a fingering recognition system are: 

1. Focus on effective gestures by further reducing the presence of ancillary gestures and 

background elements. 

2. The use of a representation that considers the action of individual fingers more pre

cisely. 

3. The use of a recognition mechanism that eliminates the burden of a knowledge-base 

and that is therefore not limited to previously learned material. 

The first specification can be achieved using the guitar mount as it will be presented in 

section 6.1.1.2. In order to fulfill the other specifications, three studies were conducted. A 

first study, presented in chapter 5, evaluated four different finger-localization algorithms. A 

second study examined the use of the linear Hough transform for string and fret detection 

(chapter 6, section 6.1.1.2) and a third one explored movement segmentation (chapter 6, 

section 6.1.1.1). Finally, a prototype respecting these specifications has been .developed 

and will be presented in chapter 6. 



Chapter 5 

General Finger-Localization 

Aigorithms Using Eyesweb 
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This chapter presents the study on finger-localization algorithms performed by the author 

during an internship at InfoMus laboratory, Università of Genova (Burns & Mazzarino, 

2006). This study was necessary to achieve the requirements for a guitar fingering retrieval 

system outlined in chapter 4. Effectively, one characteristic of general finger-localization 

algorithms is that they detect the position of individual fingers, consequently satisfying the 

requirement to consider the action of each individu al fingers. 

In order to avoid the problem of complex and not reproducible high-cost systems, this 

study focuses on two-dimensional systems using a single simple video camera. Algorithms 

using projection signatures, the circular Hough transform, and geometric properties have 

been chosen and are compared to an algorithm using color markers. Color markers are 

used solely as a reference system to evaluate the accuracy and the precision of the other 

algorithms, the presence of markers being a non-desirable constraint on the user of such 

a system. AU the algorithms have been implemented in EyesWeb using the Expressive 

Gesture Processing Library (Camurri, Mazzarino, & Volpe, 2004) together with newly 

developed blocks (available in EyesWeb 4). 

The algorithms presented in this study are inspired by the research on tabletop ap

plications (Koike, Sato, & Kobayashi, 2001; Letessier & Brard, 2004). These kinds of 

applications are often limited to the use of one finger instead of using the information that 

can be provide by detecting the position of aU fingers. Furthermore, these applications 
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often use specific and expensive hardware (infrared camera, for example). In this paper 

we suggest alternative methods that can work with simple hardware, such as a low-cost 

webcam. We use methods that were traditionally used in static pose identification (e.g., 

contour and signature) to do fingertips localization. The use of the Hough transform, on 

the other hand, was inspired by research in 3-dimensional tracking (Hemmi, 2002), but 

also by sorne of the previously mentioned tabletop applications. These applications use 

the specific geometric shape of the fingertip with various templates matching algorithms to 

locate fingers. 

The first section of this chapter briefiy describes and illustrates the EyesWeb implemen

tation of the four algorithms. Next, the test procedures are explained. The third section 

presents the results obtained from each algorithm during the tests. FinalIy, the chapter 

concludes with a comparative discussion of the potential uses of the different algorithms. 

5.1 Methods 

AlI the algorithms were evaluated in EyesWeb using 640x480 pixels RGB two-dimensional 

images of a hand performing different finger movements on a fiat surface. The videos were 

recorded by a single fixed camera with a frame rate of 25fps (frame per second), fixed gain 

and fixed shutter. The tests were run on a Pentium 4 3.06GHz with 1Gb of RAM under 

Windows XP operating system. In order to test the algorithms, the problems of finding the 

region of interest and of eliminating complex backgrounds were reduced by shooting only 

the hand region on a uniform dark background. The second line of figures 5.1, 5.2, and 5.3 

illustrates the segmentation process. In this simplified case, it consists of converting the 

image to gray-scale, applying a threshold to segment the hand from the background (using 

the fact that the hand is light while the background is dark), and filtering with a median 

filter to reduce residual noise. 

5.1.1 Projection Signatures 

Projection signatures, are performed directly on the resulting threshold binary image of 

the hand. The core process of this algorithm is shown on line 3 of figure 5.1 and consists of 

adding the binary pixels along the hand angle, which must be know previously. A low-pass 

filter is applied on the signature (row sums) in order to reduce high-frequency variations 

that create many local maxima and cause the problem of multiple positives (more than one 
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detection per fingertip). The five maxima thereby obtained should roughly correspond to 

the position of the five fingers. 

5.1.2 Geometrie Properties 

The second algorithm is based on the geometric properties and, as shown on li ne 3 of figure 

5.2, uses a contour image of the hand on which a reference point is set. This point can 

be determined either by finding the center of mass of the contour (barycenter or centroid) 

or by fixing a point on the wrist (Yorük, Dutagaci, & Sankur, 2006). Euclidean distances 

from that point to every contour points are then computed, with the five resulting maxima 

assumed to correspond to the finger ends. The minima can be used to determine the 

intersections between fingers (finger vaIleys). The geometric algorithm also requires filtering 

in order to reduce the problem of multiple positives. 

5.1.3 Cireular Hough Transform 

The circular Hough transform is applied on the contour image of the hand but could as 

weIl be applied on an edge image with complex background if no elements of the image 

exhibit the circular shape of the fingertip radius. The circular Hough transform algorithm 

uses the fact that the finger ends and the finger vaIleys have a quasi-circular shape while 

the rest of the hand is more linearly shaped. In this algorithm, circles of a given radius 

are traced on the edge or contour image and regions with the highest match (many circles 

intersecting) are assumed to correspond to finger ends and valleys (this pro cess is illustrated 

on line 3 of figure 5.3). Searched fingertips radius can be set manually or determined by 

an algorithm using the palm radius to fingertip radius proportion as an estimate (Chan, 

2004; Yorük et al., 2006; Hemmi, 2002). The circular Hough transform can find both finger 

ends and valleys but, as opposed to the geometric algorithm, does not output them in two 

distinct sets. Furthermore, the circular Hough transform requires filtering to eliminate 

false positives (detected regions that are not finger ends or valleys) that frequently appear 

between fingers. As illustrated in line 4 of figure 5.3, this can be done efficiently for finger 

ends by eliminating points that are found outside the contour image. The inconvenience 

is that the set of discarded points contains a mix of finger valleys and false positive that 

cannot be sorted easily. 
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5.1.4 Color Markers 

While the three previous algorithms rely only on the hand characteristics to find the position 

of the fingertips, the marker algorithm detect color markers attached to the main joints 

of the fingers. Each color is detected individually using color segmentation and filtering 

as illustrated in line 2 of figure 5.4. This permits the identification of the different hand 

segments. The marker colors should therefore be easy to detect and should not affect 

the threshold, edge or contour image of the hand. Respecting these constraints makes it 

possible to apply all algorithms to the same video images and compare each algorithm's 

degree of accuracy and precision with respect to the markers. 
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Figure 5.4 Finger localization using the corlor markers algorithm. Note: 
For better printout results, black and white pixels are inverted in the output 
images of line 2 
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5.2 Tests 

5.2.1 Accuracy and Precision 

Accuracy and precision are important factors in the choice of a finger-Iocalization algorithm. 

The accuracy and precision of the different algorithms were determined with respect to the 

result obtained from the evaluation of the marker positions. To evaluate the accuracy and 

precision of the algorithms, the coordinat es of 4 joints on each finger were detected by 

applying the color markers method (figure 5.4). Coordinates obtained with the three other 

algorithms were then related to the first set. The Euclidean distance between the marker 

and the closest point of each algorithm was computed. The accuracy of an algorithm can 

be determined by its distance from the marker. A curve close to zero denotes an accurate 

algorithm. The precision of an algorithm can be determined by observing the shape of the 

curve. A precise algorithm will exhibit an almost fiat curve. Figure 5.5 presents the results 

obtained by detecting the position of the tip of the small finger using each of the three 

algorithms. The values are compared to a marker placed at the center of the tip of the 

small finger. 

It can be observed that both the circular Hough transform and the geometric proper

ties algorithm are precise algorithm since the distance between the marker and the point 

they return is almost constant. However, the circular Hough transform seems to be more 

accurate than the geometric properties. The average distance to the marker is really close 

to zero in the case of the circular Hough transform, but is approximately ten pixels in the 

case of the geometric properties. The difference is mainly due to the fact that the geometric 

properties algorithm detects the extremity of the finger while the circular Hough transform 

finds the center and that is where the markers are placed. In the case of the projection 

signatures, the detection of the fingers is robust but rough: the algorithm can only find 

the fingers and not a specific region of the finger like a tip or a valley. It can be observed 

in figure 5.5 that for an almost fiat angle of the small finger, the accuracy is near twenty 

pixels (frame 0 and 160), for a small angle (between frame 50 and 160) it is approximately 

thirty pixels, and can go over a difference of sixt Y pixels for a large angle (after frame 160). 

This is due to the computation method, when the finger is making an angle, the end of the 

section that is in straight line with the palm will create a maximum and not the real finger 

end. This algorithm is consequently efficient only to find fingers or finger ends when the 

fingers are not angled. This algorithm is therefore neither accurate nor precise. 
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5.2.2 Latency and Resources Usage 

The latency of each of the algorithms is determined by computing the delay between the 

evaluation of a frame and the output of its results. If the output rate is the same as the 

input rate (expressed in terms of the amount of time lapse between two input frames), no 

significant delay is generated by the evaluation part of the algorithm. In order to know the 

processing rate and the resource usage of the evaluation algorithm, aIl screen or file outputs 

were turned off. AlI algorithm were tested in EyesWeb in the condition described in section 

5.1. Table 5.1 displays the CPU (central processing unit) usage for each algorithm. The 

range is the observed minimum and maximum CPU usage percent throughout the duration 

of the test. The mode is the most frequently observed percentage. 

Input Algorithms CPU Usage CPU Usage Output 
Rate Range Mode Rate 

Projection Signatures 10-18% 15% 
33 ms Circular Hough Transform 38-77% 55% 33 ms 

Geometric Properties 16-45% 30% 

Table 5.1 CPU usage of the three methods 

Table 5.1 shows that aU the algorithms can be used in real time since no significant 

latency has been observed. Projection signature is extremely easy on computer resource 

with a mode of 15% of CPU usage and peaks ranging between 10 and 18%. Geometric 

properties is a bit more demanding with a mode of 30%. The poor performance of the 

circular Hough transform is probably due to the usage of the traditional algorithm (Duda 

. & Hart, 1972; Schulze, 2003) that requires a lot of computation and storage for the accu

mulator celIs, more modern implementations using probabilistic and heuristic approaches 

to optimize the algorithm performance exist (Illingworth & Kittler, 1988) and are known 

to detect circles with the same degree of accuracy and precision. 

5.3 Results and Discussion 

We tested the four algorithms with video recordings of the left and right hand of 5 users (3 

females and 2 males, aIl adults). These preliminary tests were performed with recordings of 

two-dimensional finger motion on a fiat surface and not on the guitar in order to highlight 
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the general characteristic of the finger-localization algorithms. Results of these preliminary 

tests were coherent among all users and are qualitatively summarized in Table 5.2. 

Projection Geometrie Circular Color 
Signatures Properties Hough Transform Markers 

Locates fingers + + + + 
Locates fingertips - 0 0 + 
Locates finger ends - + + + 
and valleys 
Distinguishes between - + 0 + 
finger ends and valleys 
Works with - - 0 0 
complex background 
Works in real + + + + 
time (low latency) 
Computer resources + + - + 
usage 
Accuracy - + + + 
Precision - + + + 
Works with unknown - + + + 
hand orientation 
Works with unknown + + - + 
fingertips radius 

Table 5.2 Finger-localization algorithms characteristics comparison table 
(+ ---+ good to excellent, 0 ---+ neutral to good, - ---+ poor to neutral 

All the presented algorithms have succeeded, in various degrees, in detecting each finger. 

The projection signatures algorithm can only roughly identify a finger, but the circular 

Hough transform and geometric properties algorithms can find both finger intersections 

and finger end points (it is important to noté that in the case where fingers are folded, 

the end points do not correspond to the fingertips). The geometric properties algorithm 

outputs intersections and extremities in two distinct sets, but the circular Hough transform 

algorithm cannot make this distinction. The marker algorithm is the only one that can 

distinguish the various joints of the finger when different colors are used. 

The projection signatures and geometric properties algorithms need a strong segmen

tation step prior to their application. The circular Hough transform, when combined with 
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edge detection instead of contour, can work in complex environments, but sorne confusion 

can occur if other circular shapes of the size of the fingertip radius are present. Color mark

ers can be used in complex backgrounds if the colors are properly chosen but are sensitive 

to light variation. 

At 25fps aIl the algorithms output results without any significant delay; the input and 

output rate is the same. However, the circular Hough transform algorithm is much more 

demanding on CPU usage than the others. This characteristic might limit its use when it is 

combined with pose and gesture recognition algorithms. The geometric properties and the 

circular Hough transform algorithms have similar and acceptable accuracy and precision 

values. The projection signatures algorithm cannot be used if these two characteristics are 

important. 

The projection signatures algorithm can only be used in a controlled environment where 

the hand orientation is known and where finger angles don't vary to much from the straight 

line. The circular Hough transform algorithm needs previous knowledge of the fingertip 

radius or the palm radius. It can work in an environment where the distance from the video 

camera will change only if a method to estimate these radii is attached to it (Chan, 2004). 

The geometric properties algorithm do es not need any prior knowledge to be performed. 

5.4 Conclusion 

This chapter presented three algorithms to locate fingertips in two-dimensional video im

ages. These algorithms have been compared to one another and evaluated with respect to 

a fourth algorithm that uses color markers to locate the fingertips. AlI the algorithms were 

implemented and tested in EyesWeb. Results relative to the precision, accuracy, latency 

and computer resource usage of each of the algorithms showed that geometric properties 

and circular Hough transform are the two algorithms with the more potential. The circu

lar Hough transform should be preferred when a clean segmentation from the background 

is impossible while the geometric properties algorithm should be used when the fingertip 

radius is unknown and when information on both the finger ends and valley is required. 

Projection signature can be used as a fast algorithm to roughly obtained finger position. 

The choice of an algorithm should, therefore, depend on the application and on the setup 

environment. Future users should refer to the algorithms' characteristics and constraints in 

table 5.2 to chose the appropriate one. It is also important to note that in this study, the al-
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gorithms were tested alone, in a controlled environment, and on a general two-dimensional 

task. Consequently, the choice of an algorithm can also be influenced by the system in 

which it is supposed to work. As an example, the segmentation algorithm used in the 

pre-processing step and the pose or gesture algorithm used in the post-processing step can 

create constraints that will dictate the use of a specifie finger-localization algorithm. The 

choice of the appropriate finger-Iocalization algorithm for the guitar fingering problem will 

be explained and related to the general algorithms characteristics outline in this chapter in 

chapter 6. 
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This chapter presents the prototype designed to fulfill the requirements for a fingering 

recognition system highlighted by the preliminary analysis. The focus on effective ges

tures is partially realized at the hardware level by affixing the camera to the guitar neck, 

thereby eliminating the motion of the neck caused by ancillary gestures. Elimination of 

background elements is done by selecting a strict region of interest (ROI) around the neck 

and by applying a background subtraction algorithm on the image. Movement segmen

tation is performed by finding minima in the motion curve, obtained by computing the 

pixel difference betw.een each frame. The action of each individual finger is considered by 

using one of the finger-localization algorithms described in chapter 5. The details of the 

algorithm are shown in figure 6.11. 

6.1 Algorithm Design 

6.1.1 Gesture Modeling 

6.1.1.1 Temporal Modeling 

Movement segmentation is essential in order to detect fingering positions during the play

ing sequence. Furthermore, in order to save computer resources, this segmentation is done 

early in the algorithm so that the subsequent analysis steps are performed only on signif

icant finger positions (see figure 6.11 line 3). Movement segmentation is used to separate 
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the nucleus phase of the gesture from the preparation and retraction phases. Assuming 

that the temporal division of empty-handed gestures in three phases (preparation, nucleus, 

retraction) is correct and consistent (Pavlovic et al., 1997), a similar structure can be used 

to analyze instrumental gestures. 

In the preliminary analyses, movement segmentation was done by applying a threshold 

on the motion curve (figure 6.2(a)) generated by the computation of the pixel difference 

between each frame. The characteristic lower velocity phase of the nucleus was easily 

detected between each chord. However, in other playing situations, such as when playing a 

series of notes, the separation between the movement transitory phases and the nucleus is 

not that clear (figure 6.2(b)). This is due to a phenomenon called "anticipatory placements 

of action-fingers" that has been studied in violin (Baader, Kazennikov, & Wiesendanger, 

2005) and piano (Engel, Flanders, & Soechting, 1997). In these cases, the preparation 

phase of other fingers occur during the nucleus of the action-finger. Thus the motion is 

not seriaI, and consequently the global motion curve does not exhibit clear global minima 

as in the case of simple chord fingerings. However, local minima can still be observed and 

detected, and are assumed to correspond to the moment the note is trigged by the right 

hand. Local minima are found by computing the second derivative of the motion curve. 

6.1.1.2 Spatial Modeling 

In this case, two elements of the image are important: 
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From the four finger-localization algorithms presented in chapter 5, only two could be 

applied to the guitarist fingering problem. The algorithm using color markers has been 

rejected simply because it implies that the user wear markers, their use being a non

desirable constraint on the user of such a system. The algorithm using geometric properties 

could not be applied in this situation since the camera angle, the curved shape of the hand 

of a guitarist playing, and the segmentation pro cess do not create a contour image of the 

complete hand. Therefore, the barycenter is not at the center of the palm and consequently, 

the fingertips are not necessarily the furthest points from it. On the other hand, the version 

of the circular Hough transform algorithm using edge images can be adapted to work on 

this problem as well as the projection signature algorithm. The circular Hough transform 

a1gorithm was finally retained for its superiority in terms of accuracy and precision. The 

retained algorithm is in the fingertips-based subgroup of appearance-based models and used 

a transformed version of the original colored image (an edge image). 
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String and Fret Detection 

The string and fret detection algorithm was implemented in EyesWeb and is based on the 

linear Hough transform method. The linear Hough transform EyesWeb block has been 

developed by the author and makes use of the Intel OpenCV library of functions (Intel, 

2001). The finger-Iocalization algorithm returns the fingertip positions in the form of (x, y) 

pixel spatial coordinates. In the case of fingering on the guitar, the left-hand gestural space 

can be defined in terms of (string, fret) coordinates. Consequently, both string and fret 

must be detected. String and fret detection is not directly related to gesture but is useful 

to quantize the (x, y) pixel coordinates returned by the finger-Iocalization algorithm into 

valid (string, fret, finger) fingering coordinates. 

Implementation of the Algorithm 

Since the camera is attached to the guitar neck, as shown in figure 6.3, the string and 

fret positions are stable during the playing session. They therefore need to be localized 

only once at the beginning of the pro cess. This is efficient on computer resources and also 

eliminates problems like occlusion by the hand of the guitarist and noise generated by the 

vibration of the strings. The algorithm only requires one image taken after the camera 

has been fastened to the neck, before playing. This also has the advantage that this image 

can be taken in favorable lightening conditions, for instance, when the strings and frets 

are apparent before going on stage in a live performance. Since the image captured by 

the camera is wider then the neck, the first step is to concentrate on the neck region by 

cropping this section from the image. In this prototype, this is done manually, but this 

step could be automated by using a neck model to find the neck region. As illustrated on 

line 1 of figure 6.6, the final preparation step is to convert the image to grayscale. 

The algorithm then divides into two parallel pro cesses that are the detection of the 

strings and the frets. Detection of the frets (figure 6.6 lines 2 and 4) and detection of the 

strings (figure 6.6 lines 3 and 5) use the same pro cess with different parameters. First, 

a threshold operation is performed. Threshold segments the strings and frets from the 

neck. This is possible with most guitars since the strings and frets are of different colors 

than the neck. Threshold is advantageous compare to other segmentation methods since it 

works on a wide range of lighting conditions and does not require a model. This prototype 

uses a single-Ievel threshold value set manually. A different threshold value is used for the 
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(a) Camera mount on an electric guitar (b) Camera mount on a classical guitar 

Figure 6.3 Camera attached to the neck of a guitar: (a) Electric guitar (b) 
Classical guitar 
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frets and for the strings in order to enhance the searched component as much as possible. 

The next step is to apply a Sobel filter to the threshold image. A Sobel filter is a set of 

two convolution masks that can be applied separately to find the vertical and horizontal 

gradient responses of an image (Gonzalez & Woods, 1992). As figure 6.4 demonstrates, 

this allows to segment strings from frets. 

The final step is to apply the linear Hough Transform. This prototype uses the prob

abilistic linear Hough transform as found in the Intel OpenCV library (Intel, 2001), but 

completes the line segments so that they fit the image's full width or height. As explained 

in the Appendix A, the linear Hough transform finds aIl the possible lines passing through 

a set of points, therefore, each fret and string will be represented by many lines. These 

lines then need to be grouped in geometric regions. The last operation is consequently to 

group the lines fitting each fret or string. This pro cess is illustrated in figure 6.5. Fret and 

string regions can be displayed on the same picture, but this is useful for visualization only. 
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( a) Threshold frets image (b) Threshold strings image 
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(c) Vertical Sobel BIter applied on (a) ( d) Horizontal So bel filter applied on (b) 

Figure 6.4 Image preparation steps for the string and fret detection algo
rithm: (a) Threshold applied to accentuate frets (b) Threshold applied to 
accentuate strings (c) Vertical Sobel filter applied to the threshold frets image 
(d) Horizontal Sobel filter applied to the threshold strings image 

(a) Linear Hough transform applied on figure (b) Linear Hough transform applied on figure 
6.4(c) 6.4(d) 

\ \ \ 1 1 1 
(c) Regions grouping applied on (a) (d) Regions grouping applied on (b) 

Figure 6.5 Recognition steps for the string and fret detection algorithm: 
(a) Verticalline detection with the linear Hough transform (b) Horizontalline 
detection with the linear Hough transform (c) Vertical lines grouped in fret 
regions (d) Horizontallines grouped in string regions 
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Figure 6.6 String and fret detection algorithm. Note: For better printout 
results, black and white pixels are inverted in the output images of lines 2 and 
3 
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Analysis 
Circular Hou h Transform Linear Hough Transform 

• • •• 
Figure 6.7 Analysis of the fingering image applying the circular and linear 
Hough transform of the neck region in order to obtain fingertips' positions and 
strings and frets regions. 

6.1.2 Gesture Analysis 

6.1.2.1 Feature Extraction 

Localization 
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The first task of the analysis pro cess is to define the ROI. In this system, this is done 

manually by drawing a rectangle around the neck region. This method implies that the 

camera is fastened to the neck so that the neck is perpendicular to the horizontal in the 

image, as seen in figures 6.3 and 6.8. The ROI for the finger-localization algorithms is 

defined to be a little bit wider than the neck at the bottom, but tight to the neck at the 

top; this configuration allows a better view of the fingers on the first string. The ROI 

for the string and fret detection algorithm is strictly limited to the neck region. The ROI 

regions for the finger-localization algorithms and for the string and fret detection algorithm 

can be compared in figure 6.8. 

Segmentation 

Once the ROI has been defined, the gesture must be "extracted" from the image. The 

segmentation pro cess is illustrated on line 2 of figure 6.11. The system uses the difference 

of pixel background segmentation on a grayscale image to segment the hand of the guitarist 

from the neck. This is possible since the neck is stable in the image due to the camera 

setup. As can be seen in figure 6.9(a), a litt le bit of noise is introduced by the vibration 

of the played strings, but this is not significant enough to affect the silhouette and edge 
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(a) ROI for the finger-localization algorithms (b) ROI for the string and fret detection algo
rit hm 

Figure 6.8 [Region of interest in the image captured by the camera mount 
on the guitar neck: (a) ROI for the finger-localization algorithms (b) ROI for 
the string and fret detection algorithm 
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images of the guitarist hand. Most of this noise will be filtered by the finger-Iocalization 

algorithms using a median filter on the threshold image of the hand (see line 2 of figure 5.3 

and 5.1 in chapter 5). 

(a) Background subtraction (b) Canny edge detection 

Figure 6.9 Segmentation steps of the fingering algorithm: (a) Result of 
background subtraction of the grayscale image of figure 6.8(b) from the 
grayscale image of figure 6.8(a) (b) Canny edges detection applied on (a) 

6.1.2.2 Parameter Estimation 

Parameter estimation is an internaI pro cess of the finger-Iocalization algorithm and the 

string and fret detection algorithm and is illustrated on lines 3 and 4 of figure 6.11 respec

tively. The details of these algorithms are explained in chapter 5 for the finger-Iocalization 

algorithm and in section 6.1.1.2 for the string and fret detection algorithm. What is im

portant to know is that the final output of the parameter estimation step will be the 

fingertips' (x, y) pixel spatial coordinat es in the case of the finger-Iocalization algorithm 

and (string, frets) region coordinates in the case of the string and fret detection algorithm 

(image 6.7). The fingering algorithm receives the pixel spatial fingertip positions from the 

finger-Iocalization algorithm and needs to quantize these position into (string, fret) co or-
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dinates. Different quantization methods can be used and were evaluated during the test 

sessions. A spatial position vertical component can be quantized to the nearest fret, to the 

left-most fret, or to the right-most fret. In the same way, horizontal components of fingertip 

positions can be quantized to the nearest string, to the down-most, or to the upper-most. 

Right-most quantization was chosen for frets since rriusicians rarely play directly on the 

frets but rather slightly to their left. Consequently, fingertip's centers are most likely to be 

found on the left of the frets. Upper-most quantization was chosen for strings since they 

are pressed by the musician's fingertips, the center of which should therefore be detected 

under the strings. It is important to note that throughout this thesis, left corresponds 

to the guitar nut direction and right to the guitar tonehole direction, while up refers to 

low-pitch strings and down to high-pitch strings. Exhaustive automated comparisons of 

the outputs of each combination of methods should be performed in the future to draw a 

final conclusion on the best quantization method for the largest group of playing situations 

and styles possible. 

6.1.3 Gesture Recognition 

Recognition 

(string, fret, finger) 
(2, 1, 1), (4, 2, 2), (5, 3, 3) 

Figure 6.10 Fingering gesture recognition 

The coordinates of the fingertips and the string and fret regions output at the previous 

step are now related together. At the previous step, fingertip coordinates were in pixels. 

After this step, they will be quantized to (string, fret, finger) coordinates. The recognized 

gesture alphabet is therefore composed of six horizontallevels (the six strings), five vertical 

levels (the frets) and four fingers (index, middle, ring, and little). The vertical levels are 

limited to five in this setup due to hardware limitations (i.e. camera view angle). At the 

software level, any number of frets present in the image could be detected. This prototype 
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outputs the fingering positions in the format (string, fret, finger). The finger parameter 

is a number between 1 and 4 corresponding to the appearance order reading from left to 

right and, therefore, numbers do not necessarily always correspond to the same finger. For 

example, in the case of occlusion of the index by the middle finger, the middle finger will 

be labeled 1 by this prototype since occlusion is not supported in this version. The strings 

are labeled from 1 to 6 starting from the bottom and the frets are labeled from 1 to 5 (or 

more) reading from the right of the captured image (left of the guitar). If the camera is 

placed so that the first fret visible to the right is not the left-most fret of the guitar neck, 

the relative labeled number must be transposed to correspond to the absolute fret. 

6.2 Test Methods 

The prototype was tested on three different types of excerpts: the C major scale, the C 

major chords progression, and a short excerpt of the melody of Beethoven's Ode an die 

Freude. These excerpts cover the six strings, the three first frets, and are played with the 

index, middle, and ring fingers. Further tests will be performed in the future to cover the 

whole camera view fret range and the four fingers. During the test session, the camera 

was fastened to the neck of a classical guitar. The ROI around the neck for the finger

localization algorithm and for the string and fret detection algorithm was manually selected. 

The threshold for the finger-localization algorithm and for the string and fret detection 

components of the string and fret detection algorithm were also manually selected. Finally, 

the circular Hough transform radius was selected to match the guitarist's fingertip radius. 

The musician was then asked to play the three chosen excerpts using the fingering displayed 

on the scores (refer to figures 6.12,6.13, and 6.14). The video images of the playing session 

were recorded by the camera attached to the neck and by a camera on a tripod in front of 

the musician. The videos taken with the camera on the guitar mount were then processed in 

realtime (i.e., without altering the playback speed) in the Eyesweb patch. The processing 

step was defered to allow testing of different settings, for example, to test the different 

quantization methods. Preliminary tests were also performed using an electric guitar and 

produced similar results, although an exhaustive automated comparison needs to be done 

to confirm that the type of guitar does not influence the recognition rate. 

The videos were also processed manually with the assistance of the musician in order to 

identify transition phases, note beginnings, and note ends. It is important to note that this 
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Figure 6.11 Prototype algorithm 
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manual processing was done in the same conditions as the automated processing, namely 

by inspection of the images only, therefore, without the support of sound. In sorne cases, 

it was hard for the musician to precisely identify the exact frame at which a note begins 

or ends. Other comparison methods should be developed in the future to better segment 

transitions from note beginnings and ends. These new methods could involve multimodal 

integration of image and sound, for example, as it will be discussed in the future work 

section. 

axma xmx xmxa mxa 

fl 
Guitar 

t. ... .. 1 1 --.. 
..... 
1 J 

~ 

.0. L 

..... -v L ~ -u Guitar 

Figure 6.12 Test excerpt: the C major scale. Letters on the top line rep
resent the finger used for the note (i = index, m = middle, a = ring; 0 = 
little) 

x x x 
fi x ; 

Gtr. 
U -u-m _lU ux Dm ·-u-m 

a -&x a 
C Am Dm G7 a C 

;: 
Gtr. ;;. " ~ " 

~ ;, -! ::. 

Figure 6.13 Test excerpt: the C major chords progression. Letters represent 
the finger used for the note (i = index, m = middle, a = ring, 0 = little) 

6.3 Results 

The system and musician's output were compiled in a table (available as a supplement of 

this thesis on the project website: http://www.music.mcgill.ca/~amburns/masterproject/). 
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Ode an die Freude 
L. van Beethoven 
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Figure 6.14 Test excerpt: Beethoven's Ode an die Freude. Letters on the 
top line represent the finger used for the note (i = index, m = middle, a = 

ring, 0 = little) 

75 



6 Development of a Vision Based System: A Prototype 76 

Analysis of the results for the three excerpts was automated in order to compare the mu

sician and the system output. Results were compiled in the foUowing way: 

• Fingering positions are defined by the musician for the duration of notes and chords. 

System output during transition phases is consequently not considered (see table 

6.1 for an example). It is the movement segmentation algorithm's task to eliminate 

system output during these phases. The results are compiled using the assumption 

that this task would have been accomplished successfuUy. The aim of the compiled 

results is to evaluate the recognition algorithm only. The movement segmentation 

algorithm is evaluated separately and will be discussed in section 6.4 . 

• Fingering positions triplets (s#: string number x, f#: fret number x, d#: finger num

ber x) for open string notes and for unplayed strings are left empty by the musician. 

In these cases, the positions of the fingertips are considered to be undefined. In a 

real playing situation fingers will probably be placed somewhere over a (string, fret) 

position in preparation for the next note but this position will not be pressed. The 

actual prototype can evaluate a fingertip position with respect to the (string, fret) 

grid but cannot determine if the position is pressed or not. Consequently, the system 

output is not considered during open string positions (see table 6.2 and table 6.3 for 

example). 

In short, aU the fingering positions left empty by the musician were not considered. AU 

the other positions are considered. A match (displayed in bold in tables 6.1 to 6.4) can be 

partial if, for example, the system correctly identifies only the string or fret, or complete, 

if the (string, fret, finger) triplets of the musician and system output are identical (see 

table 6.4). 

Frame 
69 

70 

Output 
Phase Output type (sI, fI, dl) (s2, f2, d2) (s3, f3, d3) (s4, f4, d4) 

Transition Musician 
System (3, 1, 1) (1, 0, 2) (4, 2,3) (4,3,4) 

E Musician (4,2,2) 
System (4, 1, 1) (4,2, 2) (4, 3, 3) (1, 3, 4) 

Table 6.1 Example ofthe output during a transition to E. On frame 70, E 
fingering is correctly recognized by the prototype. 
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Output 
Frame Phase Output type (sI, fl, dl) (s2, f2, d2) (s3, f3, d3) (s4, f4, d4) 

160 

161 

G7 Musician (1, 1, 1) (5, 2, 2) (6, 3, 3) 
System (1, 1, 1) (5, 2, 2) (6, 3, 3) 

G7 Musician (1, 1, 1) (5, 2, 2) (6, 3, 3) 
System (1, 1, 1) (5, 2, 2) (6, 3, 3) (4, 3, 4) 

Table 6.2 Example of an undefined fingering position. In the G7 chord only 
the three first finger positions are defined, the little finger do es not participate 
in the chord, consequently its position is undefined and is not considered for 
a match. Both frames 160 and 161 are perfect matches. 

Output 
Frame Phase Output type (sI, fl, dl) (s2, f2, d2) (s3, f3, d3) (s4, f4, d4) 

64 

65 

D Musician 
System (2, 1, 1) (2, 2, 2) (4,3,3) (1,4,4) 

D Musician 
System (2, 1, 1) (2, 2, 2) (3, 3, 3) 

Table 6.3 Example of an open string "fingering". Since this D is played on 
the open 4th string all finger positions are undefined and cannot be identified 
by this prototype. 

Output 
Frame Phase Output type (sI, fl, dl) (s2, f2, d2) (s3, f3, d3) (s4, f4, d4) 

171 

172 

G7 Musician (1, 1, 1) (5, 2, 2) (6, 3, 3) 
System (1, 1, 1) (5, 2, 2) (6, 3, 3) (4, 3, 4) 

G7 Musician (1, 1, 1) (5, 2, 2) (6, 3, 3) 
System (1, 1, 1) (6, 2, 2) (6, 3, 3) (4, 3, 4) 

Table 6.4 Example of a complete and partial match. On frame 171, the G7 
chord is completely recognized while on frame 172 the string of the second 
finger is not correctly identified. Also note that the triplet (s4, f4, d4) is not 
considered for a match because its position is undefined. 

77 
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Index Middle Ring Total 
String Fret String Fret String Fret String Fret Complete 

(%) (%) (%) (%) (%) (%) (%) (%) (%) 
Chords progression 86.9 100.0 38.3 70.1 17.8 52.3 47.7 74.1 14.0 
Scale 100.0 100.0 79.0 79.0 22.4 70.7 38.0 73.4 34.2 
Ode An die Freude 79.2 100.0 84.3 85.4 27.3 74.8 52.0 80.9 51.6 
Total 85.7 100.0 60.9 77.2 23.1 65.3 48.2 76.2 40.2 

Table 6.5 Recognition rate per musical excerpt 

Table 6.5 presents the recognition rate per excerpt. Each line reports the results for 

one musical excerpt and the last line reports the total recognition rate for aIl excerpts. 

Recognition rates are divided per finger. The string and fret division means recognition 

rate of the strings played by the index finger, recognition rate of the frets played by the 

index finger, recognition rate of the strings played by the middle finger, and so on. The 

total column is the recognition rate of the played strings and frets independently of the 

finger. FinaIly, the complete column presents the recognition rate of a complete fingering 

(aIl the (string, fret, finger) triplets composing a chord or a note). 

Fret String 
1 

1 (~) 1 
3 

1 1 2 1 3 1 4 51
6 

(%) (%) (%) (%) (%) (%) (%) (%) 
Chords progression 100.0 76.9 56.0 92.7 62.5 24.4 27.3 24.2 84.2 
Scale 100.0 79.0 63.8 NA 100.0 87.5 64.7 19.2 NA 
Ode An die Freude 100.0 85.4 75.9 NA 79.2 70.3 24.3 33.3 NA 
Total 100.0 80.3 67.4 92.7 66.7 59.2 28.9 22.5 84.2 

76.2 48.2 

Table 6.6 Recognition rate per string and fret 

Table 6.6 presents the results for each excerpt classified by fret and string. This allows 

observation of variations in the degree of recognition between the different regions of the 

guitar neck. A recognition rate NA means that this string or fret was not played in this 

musical excerpt. The last line outlines the total recognition rate for each fret and string 

and the total recognition rate for aIl frets and all strings. 
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6.4 Discussion 

6.4.1 Missed or Extra Fingertips Detection 

More than eighty percent of the errors are caused by the detection of false fingertips or by 

the non-detection of a fingertip. The first type of errors is caused by phenomena such as 

string vibration, shadow or reflection due to lighting variation, and variation in the guitar 

neck col or due, for instance, to aging of the instrument. These phenomena create noise that 

can be misinterpret as a circular shape by the Hough transform. These errors are difficult 

to solve but in some cases - like the one illustrated in table 6.7- they could be solved 

by applying rules like forbidding the detection of two fingers on the same (string, fret) 

position. Problems due to lighting variations could potentially be solved using an infrared 

camera together with a ring of infrared LEDs providing a constant lighting. The second 

type of errors is mostly due to partial or total occlusion of a finger by another finger or by 

deformation of the quasi-circular shape of the fingertips due to the. camera angle. These 

errors also cause the (string, fret) position to be attributed to the wrong finger and in 

the worst case - for instance, when two fingers play the same fret on two different strings

a fingering position will completely be omitted. These errors are almost impossible to 

solve with hardware solutions unless more than one camera (with different views) are used. 

They could potentially be solved algorithmically by estimating fingertip trajectories from 

the previous non-occluded images or by locating the non-occluded part of the finger and 

estimating the tip position from it. 

6.4.2 Strings Spacing 

Table 6.6 presentation is interesting because it clearly shows some of the problems linked 

with the hardware setup. Due to the placement of the camera, the space between the 

strings is smaller for the upper strings (E, A, D) than for the lower strings (G, B, E), 

affecting the accuracy of the recognition system. The angle of the camera also affects the 

quasi-circular shape of the fingertips making these appear flatter and consequently more 

likely to be missed by the Hough transform as explained previously. In fact, it is possible 

to observe a decrease in the recognition rate from string 1 (high pitch) to string 5 (low 

pitch). The sixth string seems to be recognized better. This might be due to the fact that 

it is the last string, consequently fingertips that are found above it will also be quantized 
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to the sixth string. As illustrated by figure 5.5 of chapter 5 and in (Burns & Mazzarino, 

2006), the circular Hough transform has an accuracy of 5 +/- 2 pixels with respect to 

the color marker references placed at the center of the fingertip. The resolution of the 

camera used in this prototype is 640x480 pixels, giving a 610x170 pixels neck region. The 

distance between the E (low pit ch) and A strings is of 12 pixels at the first fret and 17 at 

the fifth fret. Between the Band E (high pitch) strings, the distance is 16 and 20 pixels 

for the first and fifth fret, respectively. In the worst case the finger-Iocalization algorithm 

error exceeds half the space between the upper strings and the fingertip center is detected 

above the string. This results in the fingertip being quantized one string above its real 

position. However, since this problem happens less frequently with high-pitched strings, 

where the distance between two strings is larger, the problem could have been solved using 

an higher-resolution camera. The higher recognition rate for the fret positions where the 

space between two frets is much larger also tends to confirm this hypothesis. 

6.4.3 Guitar Neck Image Deformation 

From table 6.6 it can also be observed that there is a small decrease in the fret recognition 

rate from left to right. This problem might be due to the camera angle that creates a 

deformation of the neck image (see figure 6.8(b)) and of the fingertips' shapes or to the 

angle at which the musician attacks the different frets. The neck image deformation or 

sorne attack angles can cause the fingertip center to appear slightly to the right of the 

fret. The chosen quantization method will therefore quantize the fingertip to the neck fret 

position. This problem could potentially be solved by applying a perspective correction 

algorithm to straighten the image. Perspective correction might also help to reduce the 

"missing fingertips" type of error. 

Output 
Frame Phase Output type (sI, fl, dl) (s2, f2, d2) (s3, f3, d3) (s4, f4, d4) 

162 G7 Musician (1, 1, 1) (5, 2, 2) (6, 3, 3) 
System (1, 1, 1) (1, 1, 2) (5, 2, 3) (6, 3, 4) 

Table 6.7 Example of the detection of a false fingertip. The system is 
detecting two fingertips on the first string and fret, this causes the detection 
of the fifth string, second fret and sixth string, third fret to be shifted to the 
third and fourth fingers. 



6 Development of a Vision Based System: A Prototype 81 

6.4.4 Movement Segmentation Error 

Results of the segmentation algorithm are not presented in this chapter because they seem 

to be unrelated to the phases observed by the musician. The method of thresholding the 

motion curve presented in chapter 4 works for chords and the assumption was that it would 

have been possible to detect minima in the motion curve of sequences of notes, but this 

assumption failed. It is either because the assumption is wrong, and consequently it might 

not be possible to rely on the left-hand image only for movement segmentation, or because 

the motion curve would need further high-pass filtering to remove small variations that 

cause minima unrelated to the note nucleus and generate false segmentation. The second 

hypothesis is the preferred one since it was possible to located minima at the note nucleus 

by visual inspection of the motion curve as seen in figure 6.2(b). Further tests are required 

to draw a definitive conclusion on this matter. 

6.5 Conclusion 

This prototype meets most of the objectives set in chapter 1, namely: 

• The system outputs the musician solution and consequently accounts for all aspects 

of the fingering choice. 

• The system do es not require any preliminary information or analyses of the musical 

excerpt, it reads the fingering solution directly from the musician execution of the 

excerpt. 

• The system is non-obtrusive, the musician do es not need to adapt his playing style 

or to wear special devices. Only the weight of the guitar mount can be disturbing 

but this could be solved by using a lighter camera-mount setup. 

• The system is composed of a regular webcam on a mount and is easy to affix to 

the guitar. The software requires only a few manual settings that it will be possible 

to automate in the future version. The system is therefore accessible in terms of 

co st and ease of use. However, further testing is still required to conclude on the 

reproducibility of the results for a variety of guitars. 
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Although the recognition rate for chords is lower than the one in the preliminary analy

ses (chapter 4) this algorithm demonstrated the potential for the use of computer vision to 

solve the fingering problem. In fact, by detecting individual fingers, it is possible to obtain 

partial fingering information. For instance two notes of a three note chord are solved, or 

(string, fret) coordinates are correctly recognized but are attributed to the wrong finger. 

In sorne cases, it is possible that this partial information could be used to make an edu

cated guess on the complete fingering. AIso, as the discussion section highlighted, many 

of the problems could be solved by small modifications of the hardware and software set

tings. These improvements will be discussed further in chapter 7. This prototype therefore 

satisfies this thesis' objectives and opens the possibility for several developments in future 

work. 
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Chapter 7 

Future 'Work 

Results of the prototype are encouraging and open possibilities for studies on many aspects 

of the guitarist instrumental gesture, namely gesture segmentation, anticipatory move

ments, bimanual synchronization, movement optimization, and choice of fingering. Future 

work can be divided into three categories: a) hardware and software developments, b) test 

methods and comparisons automatization, and c) data analyses and usage. 

7.1 Hardware and Software Developments 

The actual prototype has hardware limitations: 

1. Problems related to the choice of camera and environment: 

(a) Only 5 frets can be observed at the time. 

(b) The resolution of the camera currently used is 640 x 480 pixels, 30 frames per 

second. 
(c) A controlled lighting environment is required. 

(d) The guitar neck and the strings need to be of contrasting colors. For example, 

regular nylon high pitch strings are hardly detectable on a light brown maple 

wood guitar neck. 

2. Problems linked to the unimodal data acquisition system: 

(a) Only the images of the left-hand are observed. The system does not have any 

information about the right-hand gesture, the guitarist global position and ges

ture, and the sound. 
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3. Problems linked to the guitar mount: 

(a) The guitar mount is flexible which makes the test angle difficult to reproduce. 

(b) The flexible guitar mount is sensitive to large, fast movements of the guitarist, 

decalibrating the string and fret detection algorithm. 

(c) The guitar mount weights approximately 650 grams, adding a disturbing weight 

to the guitar neck. 

And software limitations: 

1. Fingertip positions are determined in each individual frame, individual fingers are not 

tracked from one frame to another. Consequently finger number one is not always 

the index, two the major, and so on. 

2. Fingertip positions are not evaluated during occlusion. 

3. Gesture segmentation based on left-hand finger movement works for chords but does 

not provide satisfying results with sequences of notes. 

Sorne paths to solve these hardware limitations are the following: 

1. Experiment with different types of camera: 

(a) Wide angle. 

(b) Higher resolution. 

(c) Infrared camera and specifie illumination. 

2. Experiment with multimodal data acquisition environment: 

(a) Use multiple cameras. 

(b) Add right-hand view, tracking, and synchronization. 

(c) Add sound and image analysis and synchronization. 

3. Create a new camera mount: 

(a) Fixed view angle. 

(b) More stable to guitarist motion. 

(c) Lighter materials. 

Software problems could be solved by exploring algorithmic solutions and by performing 

more experiments on these currently really active research topics: 
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1. Individual fingertips tracking and identification. 

2. Fingertip positions estimation during occlusion. 

3. Preferred and non-preferred hand gesture, bimanual synchronization, and anticipa

tory placement movement. 

Another potential software improvement would be to automate the choice of the cur

rently manual parameters. These parameters include: the Hough transform threshold and 

radius, the string and fret segmentation thresholds and the ROI region for both algorithm. 

Threshold automatic selection methods exist and could be applied, a basic example of these 

being Otsu (1979) method. As mention in chapter 5 methods for estimating the fingertip 

radius from the detection of the palm size already exist. The ROI region could also be 

automatically found using pattern matching of a model of the guitar neck on the captured 

image or by using the two extremity lines found by the Hough transform as the neck limits. 

7.2 Test Methods and Comparisons Automatization 

In order to improve the development of the prototype, more extensive tests and automated 

comparison methods are required. Future tests should: 

• Coyer the full range of frets viewed by the camera 

• Involve the use of aU four fingers 

• Coyer a wider variety of excerpt styles 

• Involve a larger set of musicians and guitar types 

• Involve multiple captures of the same excerpt play by the same musician 

• Coyer an the combinat ions of quantization methods 

Future comparison methods should: 

• AUow an automated comparison of the output of the different quantization methods 

• Allow to determine the percentage of error relative to each error types 
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The method used to obtain the musician output regarding the segmentation of note 

beginning, ending, and transition should also be reviewed since the method relying on the 

image only proved to be difficult at boundaries between transition and note. A method 

relying on the detection of note beginning from the sound file could maybe be useful. 

7.3 Data Analysis and Usage 

The prototype has demonstrated to have many interesting possibilities that could be used in 

many musical and non-musical fields. For example, motion curves are relevant for the study 

of anticipatory placement movements and bimanual synchronization, topics of interest in 

cognitive psychology and music education. Fingering information could be used in live 

performance to control sound effects or synthesis variables, or recorded to generate a score 

or to be analyzed for theory or educational purposes. 

The actual prototype allows for the retrieval of a motion curve representing the global 

amount of movement of the left hand. Future work on individual tracking of fingertips will 

allow the acquisition of a similar curve representing the amount of motion for each finger. 

This kind of motion curve allows the detection and study of anticipatory placement gesture 

of fingers. Combined with information about the string excitation acquired throughout 

sound analysis or right-hand motion analysis, this could also be used for the study of 

bimanual gestures and synchronization in music. 

The prototype demonstrated that a more robust version (not sensitive to lighting 

changes and guitarist motion) could be useful for live performances. A system like the 

one used by Doati (2006) presented in chapter 2 already expresses musicians and com

posers' will to use the guitar as a controller. Also as explained by Cuzzucoli and Lombardo 

(1999) and Laurson et al. (2001), fingering information is important in guitar physical mod

eling; it would therefore be natural to use the guitar itself to acquired this information. 

The guitar could, of course, be used to control any kind of sound effect or synthesis. The 

guitar, as a controller providing information about the triplet (string, fret, finger) could 

also be used for score following and automatic accompaniment generation, and automatie 

score and tablature generation during improvisation or composition. 

Finally, the most obvious use of the prototype is for the study of fingering. Fingering is 

evidently an important topie in musieology, but it has also been studied by psychologists 

trying to understand the choiee of biomechanical optimum gesture in human actions and 
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more specifically in trained actions like music playing. The current prototype allows the 

detection of the fingertip position related to the grid formed by the strings and frets on the 

fingerboard at any moment. The study of this information retrieved from many musicians 

with equivalent or different training levels may determine if there exist common fingering 

strategies and at what level of their training musicians acquire these strategies. 
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Chapter 8 

Conclusion 

The aim of this thesis was to develop a prototype for the realtime retrieval of a guitarist 

left-hand fingering. The main objective of the thesis was to investigate if computer vision 

can be used for this kind of task. 1ntermediate objectives were to develop a prototype that: 

• Accounts for aU factors involved in the choice of fingering 

• Does not require prior information or analyses of the musical excerpt 

• Does not impose constraints on the musician, i.e. the musician should not have to 

wear external devices or to adapt his playing style 

• Is accessible in term of cost, ease of use and allow for the reproducibility of the results. 

Chapter 2 presented existing methods to solve the fingering problem. These methods 

are applied at three different strategie moments of the music production process: 

• Before the performance (pre-processing) 

• During the performance (realtime) 

• After the performance (post-processing) 

AU pre-processing methods presented rely on the analysis of the score. These methods 

are not satisfying the requirements of this thesis in that they do not consider aU factors 

involved in the choice of a fingering, they mostly favor biomechanical optimal solution, and 
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they require prior analyses of the score to establish a set of rules and in sorne case to pre

pare score fragments. The realtime methods presented in this thesis fall in two categories: 

MIDI guitar and guitar-like controllers. Both categories of methods only partially answer 

the fingering problem because they only solve the (string, fret) component. Furthermore, 

these methods do not satisfy the requirements of this thesis since they require an adapta

tion of the playing style and consequently do not respect the musician naturalness, they 

are also sometime expensive and difficult to use. The post-processing method presented in 

this thesis is based on sound analysis of a guitar performance recording. Like the realtime 

methods it only solves the (string, fret) component of the fingering problem. At the mo

ment of writing this thesis it works only with one note at the time, making it unusable with 

chords. Furthermore, its accuracy on fretted strings varies between 3.8 and 8.3 centimeters 

consequently covering more than fret spacing. A method using computer vision was also 

presented. It demonstrated the will of musicians and composers for alternative gui tari st 

gesture retrieval methods. !ts constraints are that the musician is required to paint his 

finger and need to restrain his movements. 

Since none of the existing methods completely satisfy the thesis requirements a new 

method was developed. Computer vision was chosen based on the thesis requirements, 

since, as opposed to the other sensing technology normally used in HCI and music gesture 

retrieval, it has the potential of being non-intrusive, and can be developed using a wide

public low-cost camera that is accessible in term of cost and usability. To facilitate the 

development and evaluation of the method, a methodology based on three steps (gesture 

modeling, gesture analysis, gesture recognition) was proposed in chapter 3. 

Chapter 4 presented preliminary analyses that were conducted to use already available 

blocks of the EyesWeb software to perform the fingering recognition task. The analyses 

showed that the existing blocks are not sufficient to meet this thesis requirements, but 

allowed to further define the specifications for a prototype. The additional requirements 

were: 

1. To reduce ancillary gestures to the minimum in order to concentrate on effective 

gestures only 

2. To use a representation that considers the action of individual fingers 

3. To use of a recognition mechanism that is not limited to previously learned material. 
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To fulfill these requirements, a study on finger-Iocalization algorithms was performed 

(chapter 5). Four methods were implemented in Eyesweb and their characteristics were 

highlighted. The characteristics of the finger-Iocalization algorithms oriented the choice to 

the circular Hough transform to solve the guitar left-hand fingering problem. 

Chapter 6 presented a prototype in which the circular Hough transform was combined to 

a string and fret detection algorithm to output fingertip positions in (string, fret, finger) 

coordinates that solve the fingering problem. Based on the hypothesis, developed in chap

ter 3, that the fingering gesture can be divided in three phases (preparation, nucleus, 

retraction), a movement segmentation algorithm was also proposed. 

Chapter 6 concluded that the prototype meets the thesis requirements because it demon

strates that computer vision can be used to solve the guitarist fingering problem without 

imposing constraints on the guitarist nor requiring prior information on the performances. 

A system based on computer vision captures the musician fingering and consequently ac

counts for aIl factors infiuencing the choice of a fingering. Furthermore, a system based 

on finger-Iocalization recognizes fingering according to a grammar of (string, fret, finger) 

and not to a knowledge-base. However, the actual system needs to he improved to be 

rohust and reliahle in live performances. Improvements were suggested in chapter 7. 
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Appendix A 

Computer Vision Tools 

A.l The Hough Transform 

The Hough transform is an important concept in pattern matching. It uses the mathemat

ical description of a geometric shape to find regions of an image that best fits that shape. 

Its use in computer vision is born from the observation that industrial and natural images 

contain shapes that can be approximated by geometric shapes. In this thesis, two kind of 

Hough transform are used: 

1. The Iinear Hough transform is used to detect the guitar strings and frets; 

2. The circular Hough transform is used to detect fingertips, whose ends can be approx

imated with a semi-circular shape. 

A.1.1 Linear Hough Transform 

The Hough transform first form is the Iinear one. It has appeared in 1962 in a patent 

awarded to Hough. The primary aim of the patent was to automate the analysis of com

plex patterns of particle tracks in pictures obtained from a bubble chamber (Hough, 1962) 

but as Hough himself mentions: "Persons skilled in the art will, of course, readiIy adapt 

the general teachings of the invention to embodiments other than the specifie embodiments 

illustrated." It did not take many years for this affirmation to become true. Levine (1985) 

and Illingworth and Kittler (1988) reviews mention the first reference to the Hough trans

form in the picture-processing Iiterature in (1969) by Rosenfeld in a book called Picture 

Processing by Computer. However, it was found in Deans (1981) that the Hough transform 
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is a special case of the Radon transform known since 1917. The first improvements to the 

Hough transform computation were suggested by Duda and Hart (1972). Levine mentions 

that it was then followed by extensive literature coverage and applications in various fields 

ranging from biomedical, and scene analysis to vanishing points in three-space, binary 

image compression, and tracking moving targets. This is still true today where further im

provements and variations of the Hough transform exist including implementations using 

fuzzy-logic, neural network, and heuristic and probabilistic approaches. 

As exemplify in Gonzalez and Woods (1992) the original method proposed by Hough is 

a simple but efficient one. Hough first considered the line equation 

(A.1) 

and observed that even if infinitely many lines pass through (Xi, Yi) they aIl satisfy equation 

A.1. He therefore modified the equation to work in the mb plane: 

(A.2) 

Using this parameters space aIl points contained on a line with slope m'and intercept b' 

will intersect at (m', b'). This fact is illustrated in figure A.1. 
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/ -----------------. 
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(a) Collinear points 

x 

(b) Concurrent lines 

Figure A.l Parametrization using the Hne equation: (a) Two collinear 
points in the xy plane; (b) Intersection in the mb plane of the concurrent 
Hnes representing the points i and j. 

In the real do main there exist infinitely many lines that pass through a point, the mb 

parameter space therefore needs to be discretized to work in the digital domain. This is 

done by dividing the parameter space in accumulator cells. Each point is then tested for aIl 
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possible m values in the discrete mb space. The cells are called accumulators because they 

are incremented each time a point is tested on their (m, b) coordinates. Maxima in the mb 

space correspond to detected lines in the xy space. Figure A.2 illustrates an example of ten 

points that can be linked into a line. Figure A.2(b) displays the solutions for the line in 

A.2(a). It can be observed that collinear points in the xy space correspond to concurrent 

lines in the mb space. These lines intersect at the (m, b) coordinat es corresponding to the 

line that best fit the collinear points. The cell corresponding to the intersection contains a 

maximum, as can be observed in figure A.2(c). 
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2 3 3 3 • • • 2 2 4 5 5 • • 1 1 1 2 5 10 4 2 1 

6 5 3 
3 4 

2 
x m 

(a) Collinear points (b) Concurrent lines ( c) Accumulator cell 

Figure A.2 Example of 10 collinear points: (a) Collinear points; (b) Con
current lines; (c) Accumulator cell. 
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2 
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One problem with this approach is that the intercept and the slope approach infinity 

as the line approaches the vertical. This problem can be solved by using the normal 

representation of a line, as explained by (Duda & Hart, 1972). 

As illustrated in figure A.3, a line can be described by the angle f) of its normal and by 

its distance p from the origin using the following equation: 

xcosf) + ysinf) = p (A.3) 

In this method, each point will be tested on a discrete interval of f) comprised of numbers 

between [0,7l'], as it was tested for aIl possible values of m. Figure A.4 shows that points 

on a same line will have concurrent curves in the (f), p) space. As was the case in the 

(m, b) space, the problem is therefore to find points of intersection that are represented by 

maxima in the two-dimensional array of accumulator cell. 
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Figure A.3 Normal parametrization of a line given by equation A.3 where 
() and pare fixed parameters 
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Figure A.4 The normal parametrization of the line: (a) Ten collinear points; 
(b) p as a function of (), applying equation A.3 for fixed parameter x' and y'; 
(c) Intersection of the concurrent curves representing the ten points in A.4(a). 
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A.1.2 The circular Hough Transform 

The concept underlying the circular Hough transform introduced by Duda and Hart (1972) 

is quite similar to the linear one. As described in that article, the Hough transform can 

be applied to any shape that can be represented by a parametric equation. The number of 

dimensions, and therefore, the complexity of the accumulator ceIl, depends on the number 

of parameters. 

In the case of the circle, equation A.4 can be used and generates a three-dimensional 

array with parameter space (a, b, r) where (a, b) are the coordinat es of the center of the 

circle and r is the radius. 

(A.4) 

When possible, it is advantageous to reduce the parameter space to only (a, b) and to test 

the image over a fuced radius or a reduced set of r. In this case, equations A.5 and A.6 can 

be used. 

x = a + rsin(} 

y=b+rcos(} 

(A.5) 

(A.6) 

Figure A.5 illustrates how the Hough transform is applied to the contour image of a circular 

shape. Figure A.5(a) represents the circular shape to detect. Figure A.5(b) demonstrates 

how circles of a given radius are drawn around the contour image. Discrete points of the 

circular shape contour are used as center (the circular contour is shaded for clarity). FinaIly, 

figure A.5(c) shows that in the case of a match (circular shape of the search radius) aIl 

drawn circles will intersect at the center of the detected circle. This will translate in a 

maximum in the accumulator ceIls array. 
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Figure A.5 The circular Hough transform: (a) A circular shape; (b) Circles 
of a given radius are drawn along the contour of the circular shape; (c) The 
intersection of all circles indicate the center of the detected circular shape. 
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Appendix B 

Certificate of Ethical Acceptability of 

Research Involving Humans 
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