The LoM Mapping Toolbox for Max/MSP/Jitter

Doug Van Nort, Marcelo M. Wanderley
Sound Processing and Control Laboratory, Input Devices and Music Interaction Laboratory
Music Technology Area - McGill University
doug@music.mcgill.ca, mwanderley@music.mcgill.ca

Abstract

This paper presents the Library of Maps1 toolbox to aid in the
mapping of control parameters to sound synthesis parameters
via strategies that result from a geometric representation of
control. A set of objects have been created for Max/MSP and
Jitter that allow the user to map arbitrary high-dimensional
data from control to sound parameter space, and to visual-
ize this through the use of Jitter and OpenGL. The mapping
implementations are discussed and related to existing work.

1 Introduction

In the context of live performance of computer-based mu-
ic, the coupling between the energy that a performer puts
into an instrument by way of musical gestures is divorced
from the eventual sonic energy that the instrument produces.
This de-coupling is both a blessing and a curse, as it allows
one to re-think the notion of “instrument” while at the same
time it provides a challenge in regaining the gesture-sound
causality and the level of expressiveness that we’ve always
enjoyed with acoustic instruments. The strategy that one em-
ploys to assign the various control signals that a performer
produces to proper sound processing parameters is generally
ferred to as mapping. This issue has garnered increased
attention in the past several years (Wanderley 2002) as an im-
portant aspect of the design of digital musical instruments in
determining the overall feel of such instruments.

The notion of mapping in a given design context is tied
to one’s approach to the performance interface as a whole. If
a systemic viewpoint is taken in which a performer is guid-
ing high-level musical processes, then mapping relates to the
composition of the music as much as to the composition of
the performance system. If one’s goal is to construct an in-
terface that is closer to the notion of instrument in a traditional
sense - wherein a performer’s input energy is transduced into

1This title is inspired by the series of texts of the same name by Moira
Roth.

acoustic energy at the output - then mapping is a strong de-
terminant of one’s ability to articulate musical passages and
maintain a high level of expressiveness. Quite naturally the
design of an interface for musical performance is quite fluid
and can fall between these two extremes.

As has been discussed elsewhere (Hunt and Wanderley
2002), mapping can be subdivided into several categories. In
regards to the choice of input/output parameters to associate,
a mapping can be constructed so that it is \textit{one-to-one}, \textit{one-to-
many} or \textit{many-to-one}, with a combination of these different
approaches resulting in a complex \textit{many-to-many} mapping.
Several results have shown a many-to-many mapping to be
more intuitive in a real, immersive musical situation, most not-
tably in (Hunt and Kirk 2000). Further, a mapping can be \textit{ex-
licit} or \textit{implicit}. The former refers to a situation in which the
mapping is known and can be expressed analytically, while
the latter is based on internal adaptation of a system, and
can be seen as a “black box” model. This latter approach is
promising in that it can allow one to adapt a performance sys-
tem to their unique gestures, with examples given in (Lee and
Wessel 1992) and (Fels and Hinton 1995). The explicit ap-
proach is beneficial in that having knowledge about the way
that the mapping occurs allows one to tune, alter, and expand
it over time and for different musical contexts. Several such
strategies have been implemented for computer-based musi-
cal control, and yet there are not many readily accessible tools
for constructing mappings between large parameter sets. We
will discuss our contribution towards this end in the form of
the LoM toolbox.

2 Related Work on Explicit Mappings

As soon as we have an expression that explicitly asso-
ociates control and sound parameters, we can consider it from
a functional point of view. This is a useful approach as we
can have a basis of comparison between potential mapping
strategies, allowing us to consider their essential qualities,
see how they are inherently similar or different and to help
us choose one that fits a given musical context. This sort of
exposition was given in (Van Nort, Wanderley, and Depalle 2004), in which several mapping strategies that can be represented geometrically were compared. This approach is useful as it allows one to think of the set of all possible control and sound parameters as a collection of Euclidean spaces, which further allows one to think spatially about how one organizes musical materials, to visualize this in two and three dimensions and to explore the structure - perceptual and physical - of various sonic spaces (Wessel 1979).

In practice, the techniques involved in constructing such associations between spaces are a combination of interpolation, extrapolation and regression methods. There are several works that deal with interpolation between and extrapolation of control/sound presets including piecewise linear techniques relative to a triangulization of parameter space (Goudeseune 2002) or a lattice constructed in this space (Bowler, Purvis, Bailey, and Manning 1990) (Choi, Bargar, and Goudeseune 1995), a multilinear interpolation between points spaced in a grid (Wanderley, Schnell, and Rovan 1998) and a regularized spline-based technique that generates variable smoothing between points (Van Nort, Wanderley, and Depalle 2004). Each of these techniques have been incorporated in the LoM toolbox and are discussed in more detail in the next section.

An existing toolbox (MnM) for mapping within Max/MSP was presented in (Bevilacqua, Muller, and Schnell 2005). It is based on multiple linear regression techniques: given a set of control/sound parameter presets, the "surface" which represents all traversable regions of parameter space is a hyperplane that is situated near the preset points relative to some best-fit criteria. Whereas the aforementioned techniques are made up of one or many surfaces that pass through or very near each preset, this regression approach creates a single linear control/sound surface that may not pass through any preset value. This drawback is traded off with the ability to draw on vast resources from matrix algebra and linear systems theory, and to deeply utilize the matrix processing available in packages such as Jitter and FTM (Schnell, Borghesi, Schwarz, Bevilacqua, and Muller 2005). Therefore, rather than recreate any of the work put into the MnM toolbox, this current library of mapping strategies seeks to add to the available options by providing linear, piecewise linear, multilinear (hyperbolic) and spline-based strategies for interpolation and extrapolation.

3 LoM Toolbox

The purpose of the LoM toolbox is to allow artists and researchers access to tools for experimenting with different complex mappings that would be difficult to build from scratch (or from within Max/MSP) and which can be combined to create many different control possibilities. This includes rapid experimentation of mapping in the dual sense of choosing what parameters to associate between control and sound space as well as the mapping of entire regions of these spaces through interpolation. The former definition of mapping (as a pointwise association) clearly affects the design of a musical instrument, and the latter - which defines the sort of musical trajectories that are possible in sound space - is also an important determinant of the overall feel and expressiveness of an instrument (Van Nort and Wanderley 2006). The toolbox is currently based around three central interpolation strategies, and includes several externals and abstractions that provide variations, combinations and visualizations of these.

3.1 lom.si

A technique for mapping between an N-dimensional control space and M-dimensional sound parameter space (with $N \leq M$) is presented in (Goudeseune 2002). The mapping begins with a pointwise association between points in control and sound spaces, followed by a partitioning of the sound space by the creation of a simplicial complex\(^2\) that induces a similar complex in the lower-dimensional control space. At any given moment the state of the overall control system lies within one simplex within this partition, and this position can be defined relative to the N+1 nodes of the simplex that contains it. Specifically, given simplex nodes $x_0, ..., x_N$ the distance from input vector x to each face of the simplex determines the barycentric coordinates $(\lambda_0, ..., \lambda_N)$ so that

$$x = \sum_{j=0}^{N} \lambda_j x_j.$$

These scalar values $\{\lambda_j\}$ are then used to weight a linear combination of vectors in sound parameter space that correspond to the nodes of the simplex in this higher-dimensional space. The geometric surface produced in sound space is a collection of connected, continuous and piecewise-linear simplices that have non-differentiable edges, which makes it suitable for certain musical contexts (Van Nort, Wanderley, and Depalle 2004). This technique was previously available as a C++ library, but has now been ported to Max/MSP/Jitter and the LoM toolbox under the LGPL, allowing for rapid prototyping within the Max environment. Three related externals are included in the LoM package:

- lom.si: stores input and output data points and computes simplicial interpolation based on an input list of control parameters, outputting a list of sound parameters.
- lom.si: same as above but outputs list of barycentric coordinates rather than sound parameters.

The reader is directed to http://www.music.mcgill.ca/musictech/spcl/mapping for technical definitions and details not covered in this paper.
• lom.jit.si: a Jitter-based external that uses OpenGL to provide a two dimensional display of triangles in control space, to allow visualization and interactive control.

Figure 1 illustrates an example of using both lom.si and lom.jit.si. First, lom.si is initialized by providing arguments for input and output dimensions - in this case a two dimensional control space is mapped to a nine dimensional space of granular synthesis parameters. The control data is sent to lom.si, which interpolates this input vector and outputs a list of sound parameters. The control space is visualized using lom.jit.si, which renders the triangles creates by lom.si. Each node of the triangular complex refers to one stored parameter set, and the point lets the user know where they are in parameter space.

3.2 lom.multi

The second set of objects are based on a multilinear interpolation of data points, wherein the mapping is defined on a given set of control and sound parameter input/output pairs, with the control points spaced in a grid. This strategy maps an N-dimensional input point to an M-dimensional list of sound features by finding which section of the grid that the point lies in, and then computing a weighted sum of the 2^N nodes of the enclosing hypercube. Regarding its properties, this technique is differentiable across different cells of the grid, and the space is hyperbolic rather than piecewise linear as with lom.si (i.e. curved rather than flat). Again, this is important to consider as the geometry of the mapping strategy can strongly affect the response of the instrument, and the extent to which this is true in a given context can be easily tested with the use of the LoM toolbox. There are three different objects included that are related to multilinear interpolation:

• lom.multi: stores input and output data points and computes multilinear interpolation based on an input list of control parameters, outputting a list of sound parameters.
• lom.multiw: same as above but outputs a list of 2^N weights rather than sound parameters.
• lom.jit.multi: Rather than accepting lists of data parameters, this object accepts grid points in the form of matrices.

3.3 lom.rst

The final set of objects calculate a surface based on the regularized spline with tension (rst) technique as described in (Mitasa and Mitas 1993). This is an approximation strategy that differs from standard spline-based techniques in that it possesses smoothing and tension parameters that allow one to "tune" the surface and avoid large overshoots of data points. These parameters can be changed in real time to alter the character of the mapping surface. Unlike the previous set...

Figure 1: Example: control input from ctrlin is interpolated by lom.si and list of sound parameters is output - in this case to control granular synthesis parameters. Control space is rendered in OpenGL using lom.jit.si.
of objects, this is a global interpolation strategy in which all stored parameter points contribute to a single output point. Further, the output surface is constrained to be of size N+1 for a control space of size N. However, this mapping can be combined with the other objects or with the linear transformations of the aforementioned MnM toolbox in order to map to higher dimensional sound parameter spaces. Therefore, it is suggested that this set of objects be used to map to an intermediate space of meta-parameters that control higher-level attributes of sound processing. The two objects associated with the rst technique are:

- lom.rst: stores input and output data points and computes rst-based interpolation as a function of an input list of control parameters, outputting a list of sound parameters.
- lomjit.rst: Rather than accepting lists of parameters, this object accepts stored parameter points in the form of matrices.

3.4 Combinations

In addition to the set of externals discussed, the toolbox contains abstractions that combine these mappings in order to illustrate the benefit of a multi-layered approach. For example, one can map from control space into an intermediate parameter space using lom.rst, providing a smooth transition through this space, and this trajectory can then be mapped into a high-dimensional sound space via the lom.si object. The latter mapping defines the sub-region of sound parameter space that can be explored, and the former determines both the part of control space that can be accessed as well as the nature of the trajectory through this space. This allows one to construct mappings strategies that consider the perceptual structure of control and sound parameter space separately.

4 Discussion and Future Work

The toolbox has been developed in the context of our research into the perception of different control strategies and the effect of mapping on the “feel” of an instrument. Current developments include the incorporation of other mapping strategies such as natural neighbor (Bencina 2005) and sparse grid interpolation as well as further two and three dimensional visualizations.

This work has been necessitated by the fact that there are currently a lack of tools available to modularly construct mapping strategies, particularly ones that map entire continuous regions of high-dimensional parameter spaces. Thus, this toolbox should help composers and instrument designers alike to more easily explore sound parameter spaces and construct complex strategies for controlling sound.

References

